Field-Programmable L earning Arrays

Seth Bridges, Miguel Figueroa, David Hsu, and ChrisDiorio
Department of Computer Science and Engineering
University of Washington
114 Sieg Hall, Box 352350
Seattle, WA 98195-2350
{seth,miguel ,hsud,diorio} @cs.washington.edu

Abstract

This paper introduces the Field-Programmable Learning Array, a new
paradigm for rapid prototyping of learning primitives and machine-
learning algorithms in silicon. The FPLA is a mixed-signal counterpart
to the all-digital Field-Programmable Gate Array in that it enables rapid
prototyping of algorithms in hardware. Unlike the FPGA, the FPLA is
targeted directly for machine learning by providing local, parallel, on-
line analog learning using floating-gate MOS synapse transistors. We
present a prototype FPLA chip comprising an array of reconfigurable
computational blocks and local interconnect. We demonstrate the via-
bility of this architecture by mapping several learning circuits onto the
prototype chip.

1 Introduction

Implementing machine-learning algorithms in VLSI is a logical step toward enabling real-
time or mobile applications of these algorithms [1]. Several machine-learning architectures
such as neural networks and Bayes nets map naturally to VLSI, because each uses many
simple elements in parallel and computes using only local information. Such algorithms,
when implemented in VLSI, can leverage the inherent parallelism offered by the millions of
transistors on a single silicon die. Depending on the design technique, hardware implemen-
tations of learning algorithms can realize significant performance increases over standard
computers in terms of speed or power consumption.

Despite the benefits of implementing machine-learning algorithms in VLSI, several issues
have kept hardware implementations from penetrating mainstream machine learning. First,
many previous hardware systems were not scalable due to the size of many primary com-
ponents such as digital multipliers or digital-to-analog converters[2, 3]. Second, many
systems such as [4] have inflexible circuit topologies, allowing them to be used for only
very specific problems. Third, many hardware learning systems did not comprise a com-
plete solution with on-chip learning [5] and often required external weight updates[3, 6]. In
addition to these problems of scalability and inflexibility, perhaps the biggest impediment
to implementing learning in VLSI is that designing VLSI chips is a time-consuming and
error-prone process. All current VLSI learning implementations required a detailed knowl-
edge of analog and digital circuit design. This prerequisite knowledge impedes hardware
development by a hardware novice; indeed, the design process can challenge even the most

experienced circuit designer. Because we make extensive use of floating-gate synapse tran-
sistors [1] in our learning circuits to enable local adaptation, the design process becomes
even more difficult due to slow and inaccurate simulation of these devices.

A reconfigurable learning system would solve these problems by allowing rapid prototyp-
ing and flexibility in learning system hardware. Also, reconfigurability allows the system to
adapt to changes in the problem definition. For example, a designer can trade input dimen-
sionality for resolution by reallocating FPLA resources, even after the implementation is
complete. A custom VLSI solution would not allow such tradeoffs after fabrication. When
combined with a simple user interface, a reconfigurable learning system can enable anyone
with a machine-learning background to express his/her ideas in hardware.

In this paper, we propose a mixed analog-digital Field-Programmable Learning Array
(FPLA), a reconfigurable system for rapid prototyping of machine-learning algorithms in
hardware. The FPLA enables the design cycle shown in Figure 1(a) in which the designer
expresses a machine-learning problem as an algorithm, compiles that representation into
an FPLA configuration, and prototypes the algorithm in an FPLA. The FPLA is similar in
concept to all-digital Field-Programmable Gate Arrays (FPGA), in that they both enable
reconfigurable computation and prototyping using arrays of simple elements and reconfig-
urable wiring. Unlike previous reconfigurable hardware learning solutions [3, 4, 6, 7], the
FPLA is a general-purpose prototyping tool and does not target one specific architecture.
Moreover, our FPLA supports on-chip adaptation and enables rapid prototyping of a large
class of learning algorithms.

We have implemented a prototype core for an FPLA. Our chip comprises a small (2x2)
array of Programmable Learning Blocks (PLBs) as well as a simple interconnect structure
to allow the PLBs to communicate in an all-to-all fashion. Our results show that this proto-
type system achieves its design goal of enabling rapid prototyping of floating-gate learning
circuits by implementing learning circuits known in the literature as well as new circuits
prototyped for the first time.

The remainder of the paper proceeds as follows. In section 2, we discuss the proposed
FPLA architecture, as well as the subset that is our prototype. Section 3 shows results from
our test chip of the prototype design. Section 4 concludes with a discussion of improve-
ments that we are making to the design and opportunities for future work.

2 FPLA Architecture

2.1 An FPLA Architecture

Our proposed FPLA architecture, shown in Figure 1(b), has three properties that enable
machine learning: 1) a core comprising an array of Programmable Learning Blocks to
compute machine-learning functions, 2) reconfigurable interconnect to enable inter-PLB
communication, 3) the ability to compute with sufficient accuracy, and 4) a simple and
well-defined user interface.

The first two properties are dimensions of the FPLA design space, where tradeoffs between
them results in varying levels of flexibility and functionality at the cost of area and power.
The FPLA core determines the system’s functionality. For example, in a task-oriented
FPLA, the PLBs that compose the core should allow high-level functions such as multipli-
cation and outer-product learning. Likewise, to develop new learning algorithms in silicon,
the PLBs should allow lower-level functions such as current mirrors, differential pairs, and
current sources.

In addition to a multi-functional core, a reconfigurable learning array requires flexible in-
terconnect that provides good local connectivity between neighboring PLBs and global

DAC

Defineand translate algorithm

Algorithmic
Description

Hardwar e compilation

E =
Configured FPLA

Training data and learning
4 Local Interconnect Outpuit Filtering

| v v
""" Global interconnect ‘L
Trained FPLA
Aréakt)g
u
@ ()

Figure 1: (a) FPLA-Based Design Flow. A user programs a machine-learning algorithm and tests it
using standard software tools (e.g. Matlab). The design compiler transforms this code into an FPLA
configuration, which is then downloaded to the chip. At this point, the FPLA runs the algorithm on
a training data set and performs on-chip learning. (b) Proposed FPLA Architecture. The architecture
comprises an array of Programmable Learning Blocks (PLBs), a flexible interconnect, and support
circuitry on the periphery. Local interconnect enables efficient, low-cost communication between
adjacent PLBs. Global interconnect enables distant PLBs to communicate, albeit at a higher cost.

DAC

DAC

Input Filtering

1]

interconnect for long-range connections. The global interconnect must be sparse because
of area constraints in VLSI chips, but flexible enough to allow a wide range of PLB connec-
tivity. Local connectivity is critical to enable the creation of complex learning primitives
from combinations of PLBs and the implementation of large classes of machine-learning
algorithms that exhibit strong local computation.

Analog and mixed signal VLSI systems are typically plagued by offsets and device mis-
match. Even though accurate systems are possible[8], the accuracy usually comes at the
cost of increased power consumption and die area. The adaptive properties of floating-gate
transistors can overcome these intrinsic accuracy limitations[9], therefore enabling mixed
analog-digital computation to obtain the best combination of power, area, scalability, and
performance.

A user interface for an FPLA comprises two different components: a design compilation
and configuration tool, and a chip interface that provides both digital and analog 1/0. An
FPLA design compiler allows a user to compile an abstract expression of an algorithm (e.g.
Matlab code) to an FPLA configuration. The chip interface provides digital /0 to interface
with standard computers and surrounding digital circuitry, as well as analog /O to interface
with signals from sensors such as vision chips and implantable devices.

2.2 PrototypeChip

As a first step in designing an FPLA, we built a prototype focusing on the PLB design and
local interconnect. Our design comprises a 2x2 array of PLBs interconnected in an all-
to-all fashion. The system I/O comprises digital input for programming and bidirectional
analog input/output for system operation. We show the prototype FPLA architecture and
chip micrograph in Figure 2. We fabricated the chip in the TSMC 0.35um double-poly, four
metal process available from MOSIS. The FPLA included two pFET PLBs and two nFET
PLBs, each containing 8 uncommitted lines, 4 1/O blocks, and the computational primitives
described below. The FPLA occupies 2000umx700um including the programming 4-

‘ Configuration Shift Register ‘
) ==

110 110

pFET PLB

Inter-PLB Block

nFET PLB ‘

(a (b)

pFET PLB

Configuration Decoder

nFET PLB

Figure 2: (a) Fabricated Chip Architecture. Our prototype FPLA comprises 4 PLBs that contain
simple analog functional primitives. A set of interconnect switches connect the PLBs in an all-to-
all fashion. (b) Chip Micrograph. The chip photograph shows the four PLBs, inter-PLB blocks,
and programming circuitry. The chip was fabricated in the TSMC 0.35um double-poly four-metal
process from MOSIS.

to-16 decoder and 108-bit shift register. Through design optimization, we have recently
reduced the size by more than 50%.

Each of the four PLBs comprises computational circuitry and a large switching matrix built
of pass-gates controlled by SRAM. There are two different types of PLBs, the pFET PLB
and the nFET PLB, because nFET and pFET are the two flavors of transistors available
in standard CMOS processes. The computational primitives that compose the PLBs are
two floating-gate transistors, a differential pair, a current mirror, a diode-connected tran-
sistor, a bias current source, three transistors with configurable length and width, and two
configurable capacitors. These circuit primitives can be wired into arbitrary configurations
simply by changing the state of the PLB switch matrix. When deciding what functions to
place in the PLBs, our starting point was the decomposition of known primitives [10, 11]
for silicon learning as well as standard analog primitives such as those in Mead’s book
on silicon neural systems [12]. The circuits included in our PLBs are the most common
subcircuits found when decomposing these primitives.

Each of the four PLBs is independent of the others and can be programmed and operated
independently. However, more useful circuits require resources from multiple PLBs. Inter-
PLB blocks provide local connectivity between PLBs where each inter-PLB block is an
array of SRAM pass-gate switches that can connect an uncommitted line in one PLB to
an uncommitted line in another PLB. The six inter-PLB blocks provide a path from one
PLB to any other PLB in the system. To interface with the external world, there are four
I/0 connections per PLB, each of which can be configured in one of two ways: as a bare
connection to the pad for voltage inputs or current outputs, or as a voltage output through a
unity-gain buffer. The user configures the FPLA by shifting the configuration bits into the
configuration SRAM, located throughout the PLBs and interconnect.

3 Implementing M achine-L earning Primitives

To show the correct functionality of our chip, we implemented various circuits from the
literature as well as new circuits developed entirely in the FPLA. In the following section,
we show results for three of these circuits.

80

60:

40—

Weq (nA)

- Custom
—FPLA

P 025 05 075

20

(a (b) (c)

Figure 3: (a) Schematic of the correlational-learning circuit described by Shon and Hsu in [11]. (b)
Schematic of the same circuit as implemented in the FPLA. (c) Experimental results comparing the
performance of the custom circuit against the reconfigurable circuit. We scaled the data to compensate
for differences in operating point between the two implementations. The data reported by Shon and
Hsu is smoother because it is averaged over a larger number of experiments.

3.1 Correational-Learning Primitive

As a first test of our chip, we implemented the correlational-learning circuit described by
Shon and Hsu in [11]. This circuit learns the conditional probability of a binary event X
given another binary event Y. We show the original circuit in Figure 3(a), and the FPLA
implementation Figure 3(b).

We implemented this circuit using primitives from two PLBs. We input the signals X and
Y as voltage pulses. Figure 3(c) compares the results from the custom chip to the results
from the FPLA. Both sets of data can be fit by:

%
Weq = Iy (f“”“ Pr(X|Y)) @
tun0
where Iy, Liuno, Iinjo, and « are fit constants. We conclude from this experiment that
the correlational-learning circuit, when implemented in the FPLA, operates as the original
circuit. SPICE simulations confirm that the interconnect switches have a negligible effect

on circuit performance.

3.2 Regression-Learning Primitive

The regression-learning circuit described in this section is a new hardware learning primi-
tive first implemented in the FPLA. The circuit performs regression learning on a set of 2-D
input data. It comprises two correlational learning circuits like the one shown in Figure 4(a)
to encode a differential weight w. Each circuit learns w4 and w_ respectively, such that:
wW=wy —wW_ 2

The circuit operates as follows. We apply a zero-mean input signal ¢, encoded as a varying
current zz plus some DC bias current b, to the two inputs of the circuit. The differential
output current out of each circuit represents the product of its stored weight with the input
current.

outy = (z + b)wy (3)

out_ = (z + b)w_ 4)
The difference in those output currents represents the total product of the current input and
the weight stored on the floating gate.

out = outy —out_ = z(wy —w_) + blwy —w_) (5)

o
3

Vo

g
w 5 0
Q.
=
O
-0.5
Current Update Current
Input Control Output
i=x+b out=w(x+b)

1 -05 0 05
Input(nA)
(@ b

Figure 4: (a) Regression Learning Circuit. This circuit is one-half of the regression learning circuit
and learns the positive weight w. The other half of the circuit is identical but used to represent the
negative differential weight w_. The difference between the learned weights w4 and w_ converges
to the slope of the incoming data. (b) Experimental Data. This data is taken from the FPLA configured
as the circuit on the left. The circuit was shown 388 data points with a slope of 0.5 and zero-mean
Gaussian noise of 5%. The circuit learned a slope of 0.4924.

where the multiplication is performed by the current mirror formed by the input diode and
the floating gate. The output prediction we seek is wz, so we remove the scaled input offset
current wb with a high-pass filter implemented in the test computer.

OUthighpass = T(W4 — w-) (6)

Circuit training occurs in a supervised manner. An input z is provided to the circuit, and
the circuit predicts an output wz. The computer running the test compares that predicted
output with the target and feeds an error signal back to the chip. Based on the error signal,
the circuit adapts the weight w. Positive changes in w increase w, while positive changes
in w_ decrease w. We implement a small weight decay on the both synapses. Results from
this circuit are shown in Figure 4(b).

3.3 Clustering Primitive

We tested a new clustering primitive that is based on the adaptive bump circuit introduced
in [10]. The circuit performs two functions: 1) computes the similarity between an input
and a stored value, and 2) adapts the stored value to decrease its distance to the input. This
adaptive bump circuit exhibits improved adaptation over previous versions [10, 13] due
to the inclusion of the autonulling differential pair[14], shown in Figure 5(a) (top). The
autonulling differential pair ensures that the adaptation process increases the similarity be-
tween the stored mean and the input. The data in Figure 5(b) shows the clustering primitive
adapting to an input that is initially distant from the stored value. The result of this adapta-
tion is that over time, the circuit learns to produce a maximal output response at the present
input.

This circuit was easily prototyped in the FPLA. Creation of a configuration file took less
than one hour, experimental setup took another hour, and data was produced within two
additional hours. Instead of waiting several months for chip fabrication, we were able to
produce experimental results from a chip in under four hours. Also, the results are a more
accurate model of actual circuit behavior than a SPICE simulation.

F Vf92 D:‘?
800

bV 700¢
600;

500

400/

Vi =300]
2200¢

}7 ‘/m, 100,

[
Q nyl #
Vfﬂ{%

V Vi
Vins =228 Lok

—_
adaptation

2 -1 0 1 2
V1-V2(V)

Vina

(a) (b)

Figure 5: (a) Clustering Primitive. This circuit can: 1) compute the similarity between the stored
value and the input, and 2) adapt the stored value to decrease its distance to the input. (b) Exper-
imental Data. This plot shows that circuit adaptation moves the circuit’s peak response toward the
presented input. Adaptation strength decreases as the stored value approaches the input.

4 Future Work

The chip that we developed is effective for prototyping single learning primitives, but is
too small for solving real machine-learning problems. An FPLA whose target is machine-
learning algorithms requires PLBs that comprise higher-level functions, such as the primi-
tives presented in the previous section.

To scale up our design for machine-learning applications, we will make the following im-
provements to our prototype. First, to reduce the size of the PLBs, we will increase the ratio
of computational circuitry to switching circuitry by replacing the low-level functions such
as current mirrors and synapse transistors with higher-level primitives such as those men-
tioned in the previous section. Second, we will increase the number of PLBs in the design,
which will require an efficient and scalable global interconnect structure. We will base
our revisions on commercial FPGA architectures and other well-known on-chip commu-
nication schemes. Third, we will improve the 1/0 structures to enable multichip systems.
Finally, we have begun work on the design compiler, a software tool that maps machine-
learning algorithms to an FPLA configuration.

5 Conclusions

Because of the match between the parallelism offered by hardware and the parallelism
in machine-learning algorithms, mixed analog-digital VLSI is a promising substrate for
machine-learning implementations. However, custom VLSI solutions are costly, in-
flexible, and difficult to design. To overcome these limitations, we have proposed
Field-Programmable Learning Arrays, a viable reconfigurable architecture for prototyp-
ing machine-learning algorithms in hardware. FPLAs combine elements of FPGAs, analog
VLSI, and on-chip learning to provide a scalable and cost-effective solution for learning

in silicon. Our results show that our prototype core and interconnect can effectively im-
plement existing learning primitives and assist in the development of new circuits. An
enhanced version of the FPLA, currently under development, will support complex learn-
ing algorithms.

Acknowledgments

This work was supported by ONR grant #N00014-01-1-0566 and an Intel Fellowship.
Chips were fabricated by the MOSIS service.

References

[1]
(2]

3]
(4]

[5]

(6]
[7]
(8]

(9]

[10]

[11]

[12]
[13]

[14]

C. Diorio, D. Hsu, and M. Figueroa, “Adaptive CMOS: From biological inspiration to systems-
on-a-chip,” Proceedings of the |IEEE, vol. 90, no. 3, pp. 245-357, 2002.

J. B. Burr, “Digital Neural Network Implementations,” in Neural Networks: Concepts, Appli-
cations, and Implementations, Volume 2 (P. Antognetti and V. Milutinovic, eds.), pp. 237-285,
Prentice Hall, 1991.

S. Satyanarayana, Y. Tsividis, and H. Graf, “A reconfigurable VLSI neural network,” |IEEE
Journal of Solid-State Circuits, vol. 27, January 1992.

R. Coggins, M. Jabri, B. Flower, and S. Pickard, “ICEG morphology classification using an
analogue VLSI neural network,” in Advances in Neural Information Processing Systems 7,
pp. 731-738, MIT Press, 1995.

M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network
with 10240 floating gate” synapses,” in Proceedings of the International Joint Conference on
Neural Networks(IJCNN89), vol. 2, (Washington D.C), pp. 191-196, 1989.

E. K. F. Lee and P. G. Gulak, “A CMOS field programmable analog array,” |IEEE Journal of
Solid-Sate Circuits, vol. 26, December 1991.

A. Montalvo, R. Gyurcsik, and J. Paulos, “An analog VLSI neural network with on-chip learn-
ing,” |EEE Journal of Solid-Sate Circuits, vol. 32, no. 4, 1997.

R. Genov and G. Cauwenberghs, “Stochastic mixed-signal VLSI architecture for high-
dimensional kernel machines,” in Advancesin Neural Information Processing Systems 14 (T. G.
Dietterich, S. Becker, and Z. Ghahramani, eds.), (Cambridge, MA), MIT Press, 2002.

J. Hyde, T. Humes, C. Diorio, M. Thomas, and M. Figueroa, “A floating-gate trimmed, 14-
bit, 250 ms/s digital-to-analog converter in standard 0.25pym CMOS,” in Symposium on VLY
Circuits Digest of Technical Papers, pp. 328-331, 2002.

D. Hsu, M. Figueroa, and C. Diorio, “A silicon primitive for competitive learning,” in Advances
in Neural Information Processing Systems 13 (T. K. Leen, T. G. Dietterich, and V. Tresp, eds.),
pp. 713-719, MIT Press, 2001.

A. P. Shon, D. Hsu, and C. Diorio, “Learning spike-based correlations and conditional proba-
bilities in silicon,” in Advances in Neural |nformation Processing Systems 14 (T. G. Dietterich,
S. Becker, and Z. Ghahramani, eds.), (Cambridge, MA), MIT Press, 2002.

C. Mead, Analog VLS and Neural Systems. Reading, MA: Addison-Wesley, 1989.

P. Hasler, “Continuous-time feedback in floating-gate MOS circuits,” |IEEE Transactions on
Circuitsand Systems 11, vol. 48, pp. 56-64, January 2001.

D. Hsu, S. Bridges, and C. Diorio, “Adaptive quantization and density estimation in silicon,”
2002. In submission.

