
Adaptive Nonlinear System Identification
with Echo State Networks

Herbert Jaeger
International University Bremen

D-28759 Bremen, Germany
h.jaeger@iu-bremen. de

Abstract

Echo state networks (ESN) are a novel approach to recurrent neu­
ral network training. An ESN consists of a large, fixed, recurrent
"reservoir" network, from which the desired output is obtained by
training suitable output connection weights. Determination of op­
timal output weights becomes a linear, uniquely solvable task of
MSE minimization. This article reviews the basic ideas and de­
scribes an online adaptation scheme based on the RLS algorithm
known from adaptive linear systems. As an example, a 10-th or­
der NARMA system is adaptively identified. The known benefits
of the RLS algorithms carryover from linear systems to nonlinear
ones; specifically, the convergence rate and misadjustment can be
determined at design time.

1 Introduction

It is fair to say that difficulties with existing algorithms have so far precluded su­
pervised training techniques for recurrent neural networks (RNNs) from widespread
use. Echo state networks (ESNs) provide a novel and easier to manage approach
to supervised training of RNNs. A large (order of 100s of units) RNN is used as a
"reservoir" of dynamics which can be excited by suitably presented input and/or
fed-back output. The connection weights of this reservoir network are not changed
by training. In order to compute a desired output dynamics, only the weights of
connections from the reservoir to the output units are calculated. This boils down
to a linear regression. The theory of ESNs, references and many examples can be
found in [5] [6]. A tutorial is [7]. A similar idea has recently been independently
investigated in a more biologically oriented setting under the name of "liquid state
networks" [8] [9].

In this article I describe how ESNs can be conjoined with the "recursive least
squares" (RLS) algorithm, a method for fast online adaptation known from linear
systems. The resulting RLS-ESN is capable of tracking a 10-th order nonlinear
system with high quality in convergence speed and residual error. Furthermore,
the approach yields apriori estimates of tracking performance parameters and thus
allows one to design nonlinear trackers according to specifications l .

1 All algorithms and calculations described m this article are con-

Article organization. Section 2 recalls the basic ideas and definitions of ESNs and
introduces an augmentation of the basic technique. Section 3 demonstrates ESN
omine learning on the 10th order system identification task. Section 4 describes the
principles of using the RLS algorithm with ESN networks and presents a simulation
study. Section 5 wraps up.

2 Basic ideas of echo state networks

For the sake of a simple notation, in this article I address only single-input, single­
output systems (general treatment in [5]). We consider a discrete-time "reservoir"
RNN with N internal network units , a single extra input unit, and a single extra
output unit. The input at time n 2 1 is u(n), activations of internal units are x(n) =
(xl(n), ... ,xN(n)), and activation of the output unit is y(n). Internal connection
weights are collected in an N x N matrix W = (Wij), weights of connections going
from the input unit into the network in an N-element (column) weight vector win =
(w~n), and the N + 1 (input-and-network)-to-output connection weights in aN + 1-
element (row) vector wout = (w?ut). The output weights wout will be learned, the
internal weights Wand input weights win are fixed before learning, typically in a
sparse random connectivity pattern. Figure 1 sketches the setup used in this article.

N internal units

Figure 1: Basic setup of ESN. Solid arrows: fixed weights; dashed arrows: trainable
weights.

The activation of internal units and the output unit is updated according to

x(n + 1)
y(n + 1)

f(Wx(n) + winu(n + 1) + v(n + 1))
rut (wout (u(n + 1), x(n + 1))) ,

(1)
(2)

where f stands for an element-wise application of the unit nonlinearity, for which
we here use tanh; v(n + 1) is an optional noise vector; (u(n + l) , x(n + 1)) is a
vector concatenated from u(n + 1) and x(n + 1); and rut is the output unit's non­
linearity (tanh will be used here, too). Training data is a stationary I/O signal
(Uteach(n), Yteach(n)). When the network is updated according to (1), then under
certain conditions the network state becomes asymptotically independent of ini­
tial conditions. More precisely, if the network is started from two arbitrary states
x(O), X(O) and is run with the same input sequence in both cases, the resulting state
sequences x(n), x(n) converge to each other. If this condition holds , the reservoir
network state will asymptotically depend only on the input history, and the network

tained in a tutorial Mathematica notebook which can be fetched from
http://www.ais.fraunhofer.de/INDY /ESNresources.html.

is said to be an echo state network (ESN). A sufficient condition for the echo state
property is contractivity of W. In practice it was found that a weaker condition
suffices, namely, to ensure that the spectral radius I Amax I of W is less than unity.
[5] gives a detailed account.

Consider the task of computing the output weights such that the teacher output
is approximated by the network. In the ESN approach, this task is spelled out
concretely as follows: compute wout such that the training error

(3)

is minimized in the mean square sense. Note that the effect of the output non­
linearity is undone by (f0ut)-l in this error definition. We dub (fout)-IYteach(n)
the teacher pre-signal and (f0ut)-l (wout (Uteach(n), x(n)) + v(n)) the network's pre­
output. The computation of wout is a linear regression. Here is a sketch of an offline
algorithm for the entire learning procedure:

1. Fix a RNN with a single input and a single output unit , scaling the weight
matrix W such that I Amax 1< 1 obtains.

2. Run this RNN by driving it with the teaching input signal. Dismiss
data from initial transient and collect remaining input+network states
(Uteach (n), Xteach (n)) row-wise into a matrix M. Simultaneously, collect
the remaining training pre-signals (f0ut)-IYteach(n) into a column vector r.

3. Compute the pseudo-inverse M-l, and put wout = (M-Ir) T (where T
denotes transpose).

4. Write wout into the output connections; the ESN is now trained.

The modeling power of an ESN grows with network size. A cheaper way to increase
the power is to use additional nonlinear transformations ofthe network state x(n) for
computing the network output in (2). We use here a squared version of the network
state. Let w~~~ares denote a length 2N + 2 output weight vector and Xsquares(n)
the length 2N +2 (column) vector (u(n), Xl (n), . . . , xN(n), u2 (n), xi(n), ... , xJv(n)).
Keep the network update (1) unchanged, but compute outputs with the following
variant of (2):

y(n + 1) (4)

The "reservoir" and the input is now tapped by linear and quadratic connections.
The learning procedure remains linear and now goes like this:

1. (unchanged)

2. Drive the ESN with the training input. Dismiss initial transient and collect
remaining augmented states Xsquares(n) row-wise into M. Simultaneously,
collect the training pre-signals (fout)-IYteach(n) into a column vector r.

3. Compute the pseudo-inverse M-l, and put w~~~ares = (M-Ir) T.

4. The ESN is now ready for exploitation, using output formula (4).

3 Identifying a 10th order system: offline case

In this section the workings of the augmented algorithm will be demonstrated with
a nonlinear system identification task. The system was introduced in a survey-and­
unification-paper [1]. It is a 10th-order NARMA system:

d(n + 1) = 0.3 d(n) + 0.05 d(n) [t, d(n - i)] + 1.5 u(n - 9) u(n) + 0.1. (5)

Network setup. An N = 100 ESN was prepared by fixing a random, sparse connec­
tion weight matrix W (connectivity 5 %, non-zero weights sampled from uniform
distribution in [-1,1], the resulting raw matrix was re-scaled to a spectral radius
of 0.8, thus ensuring the echo state property). An input unit was attached with a
random weight vector win sampled from a uniform distribution over [-0.1,0.1].

Training data and training. An I/O training sequence was prepared by driving the
system (5) with an i.i.d. input sequence sampled from the uniform distribution over
[0,0.5]' as in [1]. The network was run according to (1) with the training input for
1200 time steps with uniform noise v(n) of size 0.0001. Data from the first 200
steps were discarded. The remaining 1000 network states were entered into the
augmented training algorithm, and a 202-length augmented output weight vector
w~~~ares was calculated.

Testing. The learnt output vector was installed and the network was run from a
zero starting state with newly created testing input for 2200 steps, of which the
first 200 were discarded. From the remaining 2000 steps, the NMSE test error
NMSEtest = E[(Y(;~(d~(n))2J was estimated. A value of NMSEtest ~ 0.032 was found.

Comments. (1) The noise term v(n) functions as a regularizer, slightly compro­
mising the training error but improving the test error. (2) Generally, the larger
an ESN, the more training data is required and the more precise the learning.
Set up exactly like in the described 100-unit example, an augmented 20-unit ESN
trained on 500 data points gave NMSEtest ~ 0.31, a 50-unit ESN trained on 1000
points gave NMSEtest ~ 0.084, and a 400-unit ESN trained on 4000 points gave
NMSEtest ~ 0.0098.

Comparison. The best NMSE training [!] error obtained in [1] on a length 200
training sequence was NMSEtrain ~ 0.2412 However, the level of precision reported
[1] and many other published papers about RNN training appear to be based on
suboptimal training schemes. After submission of this paper I went into a friendly
modeling competition with Danil Prokhorov who expertly applied EKF-BPPT tech­
niques [3] to the same tasks. His results improve on [1] results by an order of
magnitude and reach a slightly better precision than the results reported here.

4 Online adaptation of ESN network

Because the determination of optimal (augmented) output weights is a linear task,
standard recursive algorithms for MSE minimization known from adaptive linear
signal processing can be applied to online ESN estimation. I assume that the reader
is familiar with the basic idea of FIR tap-weight (Wiener) filters: i.e. , that N input
signals Xl (n), ... ,XN(n) are transformed into an output signal y(n) by an inner
product with a tap-weight vector (Wl, ... ,WN): y(n) = wlxl(n) + ... + wNxN(n).
In the ESN context, the input signals are the 2N + 2 components of the augmented
input+network state vector, the tap-weight vector is the augmented output weight
vector, and the output signal is the network pre-output (fout)-ly(n) .

2The authors miscalculated their NMSE because they used a formula for zero-mean sig­
nals. I re-calculated the value NMSEtrain ~ 0.241 from their reported best (miscalculated)
NMSE of 0.015 . The larger value agrees with the plots supplied in that paper.

4.1 A refresher on adaptive linear system identification

For a recursive online estimation of tap-weight vectors, "recursive least squares"
(RLS) algorithms are widely used in linear signal processing when fast conver­
gence is of prime importance. A good introduction to RLS is given in [2], whose
notation I follow. An online algorithm in the augmented ESN setting should do
the following: given an open-ended, typically non-stationary training I/O sequence
(Uteach(n), Yteach(n)), at each time n ~ 1 determine an augmented output weight
vector w~~~ares(n) which yields a good model of the current teacher system.

Formally, an RLS algorithm for ESN output weight update minimizes the exponen­
tially discounted square "pre-error"

n

LAn- k ((follt)-lYteach(k) - (follt)-lY [n](k))2 , (6)
k=l

where A < 1 is the forgetting factor and Y[n](k) is the model output that would
be obtained at time k when a network with the current output weights w~~~ares(n)
would be employed at all times k = 1, ... ,n.

There are many variants of RLS algorithms minimizing (6), differing in their trade­
offs between computational cost, simplicity, and numerical stability. I use a "vanilla"
version, which is detailed out in Table 12.1 in [2] and in the web tutorial package
accompanying this paper.

Two parameters characterise the tracking performance of an RLS algorithm: the
misadjustment M and the convergence time constant T. The misadjustment gives
the ratio between the excess MSE (or excess NMSE) incurred by the fluctuations of
the adaptation process, and the optimal steady-state MSE that would be obtained
in the limit of offline-training on infinite stationary training data. For instance, a
misadjustment of M = 0.3 means that the tracking error of the adaptive algorithm
in a steady-state situation exceeds the theoretically achievable optimum (with Sanle
tap weight vector length) by 30 %. The time constant T associated with an RLS
algorithm determines the exponent of the MSE convergence, e-n / T • For example,
T = 200 would imply an excess MSE reduction by I/e every 200 steps. Misad­
justment and convergence exponent are related to the forgetting factor and the
tap-vector length through

and
1

T::::::--.
I-A

4.2 Case study: RLS-ESN for our 10th-order system

(7)

Eqns. (7) can be used to predict/design the tracking characteristics of a RLS­
powered ESN. I will demonstrate this with the 10th-order system (5). Ire-use
the same augmented lOa-unit ESN, but now determine its 2N + 2 output weight
vector online with RLS. Setting A = 0.995 , and considering N = 202, Eqns. (7)
yield a misadjustment of M = 0.5 and a time constant T :::::: 200. Since the asymp­
totically optimal NMSE is approximately the NMSE of the offline-trained network,
namely, NMSE :::::: 0.032, the misadjustment M = 0.5 lets us expect a NMSE of
0.032 x 150% :::::: 0.048 for the online adaptation after convergence. The time con­
stant T :::::: 200 makes us expect NMSE convergence to the expected asymptotic
NMSE by a factor of I/e every 200 steps.

Training data. Experiments with the system (5) revealed that the system some­
times explodes when driven with i.i.d. input from [0,0.5]. To bound outputs, I
wrapped the r.h.s. of (5) with a tanh. Furthermore, I replaced the original con­
stants 0.3,0.05,1.5, 0.1 by free parameters a, (3", 6, to obtain

d(n + 1) = tanh (a d(n) + (3 d(n) [t, d(n - i)] + ,u(n - 9) u(n) + 6). (8)

This system was run for 10000 steps with an i.i.d. teacher input from [0,0.5]. Every
2000 steps, 0'.,(3",6 were assigned new random values taken from a ± 50 % interval
around the respective original constants. Fig. 2A shows the resulting teacher output
sequence, which clearly shows transitions between different "episodes" every 2000
steps.

Running the RLS-ENS algorithm. The ENS was started from zero state and
with a zero augmented output weight vector. It was driven by the teacher in­
put, and a noise of size 0.0001 was inserted into the state update, as in the
offline training. The RLS algorithm (with forgetting factor 0.995) was initial­
ized according to the prescriptions given in [2] and then run together with the
network updates , to compute from the augmented input+network states x(n) =
(u(n), Xl (n), ... ,XN(n), u2 (n), xi(n), ... ,xJv(n)) a sequence of augmented output
weight vectors w~~~ares (n). These output weight vectors were used to calculate a
network output y(n) = tanh(w~~~ares(n), x(n)).

Results. From the resulting length-l0000 sequences of desired outputs d(n) and net­
work productions y(n) , NMSE's were numerically estimated from averaging within
subsequent length-lOO blocks. Fig. 2B gives a logarithmic plot.

In the last three episodes, the exponential NMSE convergence after each episode
onset disruption is clearly recognizable. Also the convergence speed matches the
predicted time constant, as revealed by the T = 200 slope line inserted in Fig. 2B.

The dotted horizontal line in Fig. 2B marks the NMSE of the offline-trained ESN
described in the previous section. Surprisingly, after convergence, the online-NMSE
is lower than the offline NMSE. This can be explained through the IIR (autoregres­
sive) nature of the system (5) resp. (8) , which incurs long-term correlations in the
signal d(n), or in other words, a nonstationarity of the signal in the timescale of the
correlation lengthes, even with fixed parameters a, (3", 6. This medium-term non­
stationarity compromises the performance of the offline algorithm, but the online
adaptation can to a certain degree follow this nonstationarity.

Fig. 2C is a logarithmic plot of the development of the mean absolute output weight
size. It is apparent that after starting from zero, there is an initial exponential
growth of absolute values of the output weights, until a stabilization at a size of
about 1000, whereafter the NMSE develops a regular pattern (Fig. 2B).

Finally, Fig. 2D shows an overlay of d(n) (solid) with y(n) (dotted) of the last 100
steps in the experiment, visually demonstrating the precision after convergence.

A note on noise and stability. Standard offline training of ESNs yields output
weights whose absolute size depends on the noise inserted into the network dur­
ing training: the larger the noise, the smaller the mean output weights (extensive
discussion in [5]). In online training, a similar inverse correlation between output
weight size (after settling on plateau) and noise size can be observed. When the
online learning experiment was done otherwise identically but without noise inser­
tion, weights grew so large that the RLS algorithm entered a region of numerical

instability. Thus, the noise term is crucial here for numerical stability, a condition
familiar from EKF -based RNN training schemes [3], which are computationally
closely related to RLS.

A.

C.

0.8
0 . 7
0.6
0.5
0.4
0 . 3

Teacher output signal

2000 4000 6000 8000 10000

LoglO of avo abs. weights

~!I~
2000 4000 6000 8000 10000

LoglO of NMSE

-0 . 5

-1

-1.5

-2
B.

Teacher vs. network

D.

Figure 2: A. Teacher output. B. NMSE with predicted baseline and slopeline. C.
Development of weights. D. Last 100 steps: desired (solid) and network-predicted
(dashed) signal. For details see text.

5 Discussion

Several of the well-known error-gradient-based RNN training algorithms can be used
for online weight adaptation. The update costs per time step in the most efficient of
those algorithms (overview in [1]) are O(N2) , where N is network size. Typically,
standard approaches train small networks (order of N = 20), whereas ESN typically
relies on large networks for precision (order of N = 100). Thus, the RLS-based ESN
online learning algorithm is typically more expensive than standard techniques.
However, this drawback might be compensated by the following properties of RLS­
ESN:

• Simplicity of design and implementation; robust behavior with little need
for learning parameter hand-tuning.

• Custom-design of RLS-ESNs with prescribed tracking parameters, trans­
ferring well-understood linear systems methods to nonlinear systems.

• Systems with long-lasting short-term memory can be learnt. Exploitable
ESN memory spans grow with network size (analysis in [6]). Consider the

30th order system d(n+ 1) = tanh(0.2d(n) +0.04d(n) [L~=o 9d(n - i)] +
1.5 u(n - 29) u(n) + 0.001). It was learnt by a 400-unit augmented adaptive
ESN with a test NMSE of 0.0081. The 51-th (!) order system y(n + 1) =
u(n - 10) u(n - 50) was learnt offline by a 400-unit augmented ESN with
a NMSE of 0.213.

All in all, on the kind of tasks considered in above, adaptive (augmented) ESNs
reach a similar level of precision as today's most refined gradient-based techniques.
A given level of precision is attained in ESN vs. gradient-based techniques with a
similar number of trainable weights (D. Prokhorov, private communication). Be­
cause gradient-based techniques train every connection weight in the RNN, whereas

3See Mathematica notebook for details.

ESNs train only the output weights, the numbers of units of similarly performing
standard RNNs vs. ESNs relate as N to N 2 . Thus, RNNs are more compact than
equivalent ESNs. However, when working with ESNs, for each new trained out­
put signal one can re-use the same "reservoir", adding only N new connections
and weights. This has for instance been exploited for robots in the AIS institute
by simultaneously training multiple feature detectors from a single "reservoir" [4].
In this circumstance, with a growing number of simultaneously required outputs,
the requisite net model sizes for ESNs vs. traditional RNNs become asymptotically
equal. The size disadvantage of ESNs is further balanced by much faster offline
training, greater simplicity, and the general possibility to exploit linear-systems
expertise for nonlinear adaptive modeling.

Acknowledgments The results described in this paper were obtained while I
worked at the Fraunhofer AIS Institute. I am greatly indebted to Thomas
Christaller for unfaltering support. Wolfgang Maass and Danil Prokhorov con­
tributed motivating discussions and valuable references. An international patent ap­
plication for the ESN technique was filed on October 13, 2000 (PCT /EPOI/11490).

References

[1] A.F. Atiya and A.G. Parlos. New results on recurrent network training: Unifying
the algorithms and accelerating convergence. IEEE Trans. Neural Networks,
11(3):697- 709,2000.

[2] B. Farhang-Boroujeny. Adaptive Filters: Theory and Applications. Wiley, 1998.

[3] L.A. Feldkamp, D.V. Prokhorov, C.F. Eagen, and F. Yuan. Enhanced multi­
stream Kalman filter training for recurrent neural networks. In J .A.K. Suykens
and J. Vandewalle, editors, Nonlinear Modeling: Advanced Black-Box Tech­
niques, pages 29- 54. Kluwer, 1998.

[4] J. Hertzberg, H. Jaeger, and F. Schonherr. Learning to ground fact symbols in
behavior-based robots. In F. van Harmelen, editor, Proc. 15th Europ. Gonf. on
Art. Int. (EGAI 02), pages 708- 712. lOS Press, Amsterdam, 2002.

[5] H. Jaeger. The "echo state" approach to analysing and
ing recurrent neural networks. GMD Report 148, GMD -
man National Research Institute for Computer Science,
http://www.gmd.de/People/Herbert.Jaeger/Publications.html.

train­
Ger-

2001.

[6] H. Jaeger. Short term memory in echo state networks. GMD-Report 152,
GMD - German National Research Institute for Computer Science, 2002.
http://www.gmd.de/People/Herbert.Jaeger/Publications.html.

[7] H. Jaeger. Tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the echo state network approach. GMD Report 159, Fraunhofer
Institute AIS , 2002.

[8] W. Maass, T. Natschlaeger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturbations.
http://www.cis.tugraz.at/igi/maass/psfiles/LSM-vl06.pdf. 2002.

[9] W. Maass, Th. NatschHiger, and H. Markram. A model for real-time compu­
tation in generic neural microcircuits. In S. Becker, S. Thrun, and K. Ober­
mayer , editors, Advances in Neural Information Processing System 15 (Proc.
NIPS 2002). MIT Press, 2002.

