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Abstract 

Echo state networks (ESN) are a novel approach to recurrent neu­
ral network training. An ESN consists of a large, fixed, recurrent 
"reservoir" network, from which the desired output is obtained by 
training suitable output connection weights. Determination of op­
timal output weights becomes a linear, uniquely solvable task of 
MSE minimization. This article reviews the basic ideas and de­
scribes an online adaptation scheme based on the RLS algorithm 
known from adaptive linear systems. As an example, a 10-th or­
der NARMA system is adaptively identified. The known benefits 
of the RLS algorithms carryover from linear systems to nonlinear 
ones; specifically, the convergence rate and misadjustment can be 
determined at design time. 

1 Introduction 

It is fair to say that difficulties with existing algorithms have so far precluded su­
pervised training techniques for recurrent neural networks (RNNs) from widespread 
use. Echo state networks (ESNs) provide a novel and easier to manage approach 
to supervised training of RNNs. A large (order of 100s of units) RNN is used as a 
"reservoir" of dynamics which can be excited by suitably presented input and/or 
fed-back output. The connection weights of this reservoir network are not changed 
by training. In order to compute a desired output dynamics, only the weights of 
connections from the reservoir to the output units are calculated. This boils down 
to a linear regression. The theory of ESNs, references and many examples can be 
found in [5] [6]. A tutorial is [7]. A similar idea has recently been independently 
investigated in a more biologically oriented setting under the name of "liquid state 
networks" [8] [9]. 

In this article I describe how ESNs can be conjoined with the "recursive least 
squares" (RLS) algorithm, a method for fast online adaptation known from linear 
systems. The resulting RLS-ESN is capable of tracking a 10-th order nonlinear 
system with high quality in convergence speed and residual error. Furthermore, 
the approach yields apriori estimates of tracking performance parameters and thus 
allows one to design nonlinear trackers according to specifications l . 

1 All algorithms and calculations described m this article are con-



Article organization. Section 2 recalls the basic ideas and definitions of ESNs and 
introduces an augmentation of the basic technique. Section 3 demonstrates ESN 
omine learning on the 10th order system identification task. Section 4 describes the 
principles of using the RLS algorithm with ESN networks and presents a simulation 
study. Section 5 wraps up. 

2 Basic ideas of echo state networks 

For the sake of a simple notation, in this article I address only single-input, single­
output systems (general treatment in [5]). We consider a discrete-time "reservoir" 
RNN with N internal network units , a single extra input unit, and a single extra 
output unit. The input at time n 2 1 is u(n), activations of internal units are x(n) = 
(xl(n), ... ,xN(n)), and activation of the output unit is y(n). Internal connection 
weights are collected in an N x N matrix W = (Wij), weights of connections going 
from the input unit into the network in an N-element (column) weight vector win = 
(w~n), and the N + 1 (input-and-network)-to-output connection weights in aN + 1-
element (row) vector wout = (w?ut). The output weights wout will be learned, the 
internal weights Wand input weights win are fixed before learning, typically in a 
sparse random connectivity pattern. Figure 1 sketches the setup used in this article. 

N internal units 

Figure 1: Basic setup of ESN. Solid arrows: fixed weights; dashed arrows: trainable 
weights. 

The activation of internal units and the output unit is updated according to 

x(n + 1) 
y(n + 1) 

f(Wx(n) + winu(n + 1) + v(n + 1)) 
rut (wout ( u(n + 1), x(n + 1) )) , 

(1) 
(2) 

where f stands for an element-wise application of the unit nonlinearity, for which 
we here use tanh; v(n + 1) is an optional noise vector; (u(n + l) , x(n + 1)) is a 
vector concatenated from u(n + 1) and x(n + 1); and rut is the output unit's non­
linearity (tanh will be used here, too). Training data is a stationary I/O signal 
(Uteach(n), Yteach(n)). When the network is updated according to (1), then under 
certain conditions the network state becomes asymptotically independent of ini­
tial conditions. More precisely, if the network is started from two arbitrary states 
x(O), X(O) and is run with the same input sequence in both cases, the resulting state 
sequences x(n), x(n) converge to each other. If this condition holds , the reservoir 
network state will asymptotically depend only on the input history, and the network 

tained in a tutorial Mathematica notebook which can be fetched from 
http://www.ais.fraunhofer.de/INDY /ESNresources.html. 



is said to be an echo state network (ESN). A sufficient condition for the echo state 
property is contractivity of W. In practice it was found that a weaker condition 
suffices, namely, to ensure that the spectral radius I Amax I of W is less than unity. 
[5] gives a detailed account. 

Consider the task of computing the output weights such that the teacher output 
is approximated by the network. In the ESN approach, this task is spelled out 
concretely as follows: compute wout such that the training error 

(3) 

is minimized in the mean square sense. Note that the effect of the output non­
linearity is undone by (f0ut)-l in this error definition. We dub (fout)-IYteach(n) 
the teacher pre-signal and (f0ut)-l (wout (Uteach(n), x(n)) + v(n)) the network's pre­
output. The computation of wout is a linear regression. Here is a sketch of an offline 
algorithm for the entire learning procedure: 

1. Fix a RNN with a single input and a single output unit , scaling the weight 
matrix W such that I Amax 1< 1 obtains. 

2. Run this RNN by driving it with the teaching input signal. Dismiss 
data from initial transient and collect remaining input+network states 
(Uteach (n), Xteach (n)) row-wise into a matrix M. Simultaneously, collect 
the remaining training pre-signals (f0ut)-IYteach(n) into a column vector r. 

3. Compute the pseudo-inverse M-l, and put wout = (M-Ir) T (where T 
denotes transpose). 

4. Write wout into the output connections; the ESN is now trained. 

The modeling power of an ESN grows with network size. A cheaper way to increase 
the power is to use additional nonlinear transformations ofthe network state x(n) for 
computing the network output in (2). We use here a squared version of the network 
state. Let w~~~ares denote a length 2N + 2 output weight vector and Xsquares(n) 
the length 2N +2 (column) vector (u(n), Xl (n), . . . , xN(n), u2 (n), xi(n), ... , xJv(n)). 
Keep the network update (1) unchanged, but compute outputs with the following 
variant of (2): 

y(n + 1) (4) 

The "reservoir" and the input is now tapped by linear and quadratic connections. 
The learning procedure remains linear and now goes like this: 

1. (unchanged) 

2. Drive the ESN with the training input. Dismiss initial transient and collect 
remaining augmented states Xsquares(n) row-wise into M. Simultaneously, 
collect the training pre-signals (fout)-IYteach(n) into a column vector r. 

3. Compute the pseudo-inverse M-l, and put w~~~ares = (M-Ir) T. 

4. The ESN is now ready for exploitation, using output formula (4). 

3 Identifying a 10th order system: offline case 

In this section the workings of the augmented algorithm will be demonstrated with 
a nonlinear system identification task. The system was introduced in a survey-and­
unification-paper [1]. It is a 10th-order NARMA system: 



d(n + 1) = 0.3 d(n) + 0.05 d(n) [t, d(n - i)] + 1.5 u(n - 9) u(n) + 0.1. (5) 

Network setup. An N = 100 ESN was prepared by fixing a random, sparse connec­
tion weight matrix W (connectivity 5 %, non-zero weights sampled from uniform 
distribution in [-1,1], the resulting raw matrix was re-scaled to a spectral radius 
of 0.8, thus ensuring the echo state property). An input unit was attached with a 
random weight vector win sampled from a uniform distribution over [-0.1,0.1]. 

Training data and training. An I/O training sequence was prepared by driving the 
system (5) with an i.i.d. input sequence sampled from the uniform distribution over 
[0,0.5]' as in [1]. The network was run according to (1) with the training input for 
1200 time steps with uniform noise v(n) of size 0.0001. Data from the first 200 
steps were discarded. The remaining 1000 network states were entered into the 
augmented training algorithm, and a 202-length augmented output weight vector 
w~~~ares was calculated. 

Testing. The learnt output vector was installed and the network was run from a 
zero starting state with newly created testing input for 2200 steps, of which the 
first 200 were discarded. From the remaining 2000 steps, the NMSE test error 
NMSEtest = E[(Y(;~(d~(n))2J was estimated. A value of NMSEtest ~ 0.032 was found. 

Comments. (1) The noise term v(n) functions as a regularizer, slightly compro­
mising the training error but improving the test error. (2) Generally, the larger 
an ESN, the more training data is required and the more precise the learning. 
Set up exactly like in the described 100-unit example, an augmented 20-unit ESN 
trained on 500 data points gave NMSEtest ~ 0.31, a 50-unit ESN trained on 1000 
points gave NMSEtest ~ 0.084, and a 400-unit ESN trained on 4000 points gave 
NMSEtest ~ 0.0098. 

Comparison. The best NMSE training [!] error obtained in [1] on a length 200 
training sequence was NMSEtrain ~ 0.2412 However, the level of precision reported 
[1] and many other published papers about RNN training appear to be based on 
suboptimal training schemes. After submission of this paper I went into a friendly 
modeling competition with Danil Prokhorov who expertly applied EKF-BPPT tech­
niques [3] to the same tasks. His results improve on [1] results by an order of 
magnitude and reach a slightly better precision than the results reported here. 

4 Online adaptation of ESN network 

Because the determination of optimal (augmented) output weights is a linear task, 
standard recursive algorithms for MSE minimization known from adaptive linear 
signal processing can be applied to online ESN estimation. I assume that the reader 
is familiar with the basic idea of FIR tap-weight (Wiener) filters: i.e. , that N input 
signals Xl (n), ... ,XN(n) are transformed into an output signal y(n) by an inner 
product with a tap-weight vector (Wl, ... ,WN): y(n) = wlxl(n) + ... + wNxN(n). 
In the ESN context, the input signals are the 2N + 2 components of the augmented 
input+network state vector, the tap-weight vector is the augmented output weight 
vector, and the output signal is the network pre-output (fout)-ly(n) . 

2The authors miscalculated their NMSE because they used a formula for zero-mean sig­
nals. I re-calculated the value NMSEtrain ~ 0.241 from their reported best (miscalculated) 
NMSE of 0.015 . The larger value agrees with the plots supplied in that paper. 



4.1 A refresher on adaptive linear system identification 

For a recursive online estimation of tap-weight vectors, "recursive least squares" 
(RLS) algorithms are widely used in linear signal processing when fast conver­
gence is of prime importance. A good introduction to RLS is given in [2], whose 
notation I follow. An online algorithm in the augmented ESN setting should do 
the following: given an open-ended, typically non-stationary training I/O sequence 
(Uteach(n), Yteach(n)), at each time n ~ 1 determine an augmented output weight 
vector w~~~ares(n) which yields a good model of the current teacher system. 

Formally, an RLS algorithm for ESN output weight update minimizes the exponen­
tially discounted square "pre-error" 

n 

LAn- k ((follt)-lYteach(k) - (follt)-lY [n](k))2 , (6) 
k=l 

where A < 1 is the forgetting factor and Y[n](k) is the model output that would 
be obtained at time k when a network with the current output weights w~~~ares(n) 
would be employed at all times k = 1, ... ,n. 

There are many variants of RLS algorithms minimizing (6), differing in their trade­
offs between computational cost, simplicity, and numerical stability. I use a "vanilla" 
version, which is detailed out in Table 12.1 in [2] and in the web tutorial package 
accompanying this paper. 

Two parameters characterise the tracking performance of an RLS algorithm: the 
misadjustment M and the convergence time constant T. The misadjustment gives 
the ratio between the excess MSE (or excess NMSE) incurred by the fluctuations of 
the adaptation process, and the optimal steady-state MSE that would be obtained 
in the limit of offline-training on infinite stationary training data. For instance, a 
misadjustment of M = 0.3 means that the tracking error of the adaptive algorithm 
in a steady-state situation exceeds the theoretically achievable optimum (with Sanle 
tap weight vector length) by 30 %. The time constant T associated with an RLS 
algorithm determines the exponent of the MSE convergence, e-n / T • For example, 
T = 200 would imply an excess MSE reduction by I/e every 200 steps. Misad­
justment and convergence exponent are related to the forgetting factor and the 
tap-vector length through 

and 
1 

T::::::--. 
I-A 

4.2 Case study: RLS-ESN for our 10th-order system 

(7) 

Eqns. (7) can be used to predict/design the tracking characteristics of a RLS­
powered ESN. I will demonstrate this with the 10th-order system (5). Ire-use 
the same augmented lOa-unit ESN, but now determine its 2N + 2 output weight 
vector online with RLS. Setting A = 0.995 , and considering N = 202, Eqns. (7) 
yield a misadjustment of M = 0.5 and a time constant T :::::: 200. Since the asymp­
totically optimal NMSE is approximately the NMSE of the offline-trained network, 
namely, NMSE :::::: 0.032, the misadjustment M = 0.5 lets us expect a NMSE of 
0.032 x 150% :::::: 0.048 for the online adaptation after convergence. The time con­
stant T :::::: 200 makes us expect NMSE convergence to the expected asymptotic 
NMSE by a factor of I/e every 200 steps. 



Training data. Experiments with the system (5) revealed that the system some­
times explodes when driven with i.i.d. input from [0,0.5]. To bound outputs, I 
wrapped the r.h.s. of (5) with a tanh. Furthermore, I replaced the original con­
stants 0.3,0.05,1.5, 0.1 by free parameters a, (3", 6, to obtain 

d(n + 1) = tanh (a d(n) + (3 d(n) [t, d(n - i)] + ,u(n - 9) u(n) + 6). (8) 

This system was run for 10000 steps with an i.i.d. teacher input from [0,0.5]. Every 
2000 steps, 0'.,(3",6 were assigned new random values taken from a ± 50 % interval 
around the respective original constants. Fig. 2A shows the resulting teacher output 
sequence, which clearly shows transitions between different "episodes" every 2000 
steps. 

Running the RLS-ENS algorithm. The ENS was started from zero state and 
with a zero augmented output weight vector. It was driven by the teacher in­
put, and a noise of size 0.0001 was inserted into the state update, as in the 
offline training. The RLS algorithm (with forgetting factor 0.995) was initial­
ized according to the prescriptions given in [2] and then run together with the 
network updates , to compute from the augmented input+network states x(n) = 
(u(n), Xl (n), ... ,XN(n), u2 (n), xi(n), ... ,xJv(n)) a sequence of augmented output 
weight vectors w~~~ares (n). These output weight vectors were used to calculate a 
network output y(n) = tanh(w~~~ares(n), x(n)). 

Results. From the resulting length-l0000 sequences of desired outputs d(n) and net­
work productions y(n) , NMSE's were numerically estimated from averaging within 
subsequent length-lOO blocks. Fig. 2B gives a logarithmic plot. 

In the last three episodes, the exponential NMSE convergence after each episode 
onset disruption is clearly recognizable. Also the convergence speed matches the 
predicted time constant, as revealed by the T = 200 slope line inserted in Fig. 2B. 

The dotted horizontal line in Fig. 2B marks the NMSE of the offline-trained ESN 
described in the previous section. Surprisingly, after convergence, the online-NMSE 
is lower than the offline NMSE. This can be explained through the IIR (autoregres­
sive) nature of the system (5) resp. (8) , which incurs long-term correlations in the 
signal d( n), or in other words, a nonstationarity of the signal in the timescale of the 
correlation lengthes, even with fixed parameters a, (3", 6. This medium-term non­
stationarity compromises the performance of the offline algorithm, but the online 
adaptation can to a certain degree follow this nonstationarity. 

Fig. 2C is a logarithmic plot of the development of the mean absolute output weight 
size. It is apparent that after starting from zero, there is an initial exponential 
growth of absolute values of the output weights, until a stabilization at a size of 
about 1000, whereafter the NMSE develops a regular pattern (Fig. 2B). 

Finally, Fig. 2D shows an overlay of d(n) (solid) with y(n) (dotted) of the last 100 
steps in the experiment, visually demonstrating the precision after convergence. 

A note on noise and stability. Standard offline training of ESNs yields output 
weights whose absolute size depends on the noise inserted into the network dur­
ing training: the larger the noise, the smaller the mean output weights (extensive 
discussion in [5]). In online training, a similar inverse correlation between output 
weight size (after settling on plateau) and noise size can be observed. When the 
online learning experiment was done otherwise identically but without noise inser­
tion, weights grew so large that the RLS algorithm entered a region of numerical 



instability. Thus, the noise term is crucial here for numerical stability, a condition 
familiar from EKF -based RNN training schemes [3], which are computationally 
closely related to RLS. 
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Figure 2: A. Teacher output. B. NMSE with predicted baseline and slopeline. C. 
Development of weights. D. Last 100 steps: desired (solid) and network-predicted 
( dashed) signal. For details see text. 

5 Discussion 

Several of the well-known error-gradient-based RNN training algorithms can be used 
for online weight adaptation. The update costs per time step in the most efficient of 
those algorithms (overview in [1]) are O(N2 ) , where N is network size. Typically, 
standard approaches train small networks (order of N = 20), whereas ESN typically 
relies on large networks for precision (order of N = 100). Thus, the RLS-based ESN 
online learning algorithm is typically more expensive than standard techniques. 
However, this drawback might be compensated by the following properties of RLS­
ESN: 

• Simplicity of design and implementation; robust behavior with little need 
for learning parameter hand-tuning. 

• Custom-design of RLS-ESNs with prescribed tracking parameters, trans­
ferring well-understood linear systems methods to nonlinear systems. 

• Systems with long-lasting short-term memory can be learnt. Exploitable 
ESN memory spans grow with network size (analysis in [6]). Consider the 

30th order system d(n+ 1) = tanh(0.2d(n) +0.04d(n) [L~=o 9d(n - i)] + 
1.5 u(n - 29) u(n) + 0.001). It was learnt by a 400-unit augmented adaptive 
ESN with a test NMSE of 0.0081. The 51-th (!) order system y(n + 1) = 
u(n - 10) u(n - 50) was learnt offline by a 400-unit augmented ESN with 
a NMSE of 0.213. 

All in all, on the kind of tasks considered in above, adaptive (augmented) ESNs 
reach a similar level of precision as today's most refined gradient-based techniques. 
A given level of precision is attained in ESN vs. gradient-based techniques with a 
similar number of trainable weights (D. Prokhorov, private communication). Be­
cause gradient-based techniques train every connection weight in the RNN, whereas 

3See Mathematica notebook for details. 



ESNs train only the output weights, the numbers of units of similarly performing 
standard RNNs vs. ESNs relate as N to N 2 . Thus, RNNs are more compact than 
equivalent ESNs. However, when working with ESNs, for each new trained out­
put signal one can re-use the same "reservoir", adding only N new connections 
and weights. This has for instance been exploited for robots in the AIS institute 
by simultaneously training multiple feature detectors from a single "reservoir" [4]. 
In this circumstance, with a growing number of simultaneously required outputs, 
the requisite net model sizes for ESNs vs. traditional RNNs become asymptotically 
equal. The size disadvantage of ESNs is further balanced by much faster offline 
training, greater simplicity, and the general possibility to exploit linear-systems 
expertise for nonlinear adaptive modeling. 
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