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Abstract

We investigate a general semi-Markov Decision Process (SMDP)
framework for modeling concurrent decision making, where agents
learn optimal plans over concurrent temporally extended actions.
We introduce three types of parallel termination schemes – all, any
and continue – and theoretically and experimentally compare them.

1 Introduction

We investigate a general framework for modeling concurrent actions. The notion of
concurrent action is formalized in a general way, to capture both situations where a
single agent can execute multiple parallel processes, as well as the multi-agent case
where many agents act in parallel. Concurrency clearly allows agents to achieve
goals more quickly: in making breakfast, we interleave making toast and coffee
with other activities such as getting milk; in driving, we search for road signs while
controlling the wheel, accelerator and brakes.

Most previous work on concurrency has focused on parallelizing primitive (unit
step) actions. Reiter developed axioms for concurrent planning using the situation
calculus framework [4]. Knoblock [3] and Boutilier [1] modify the STRIPS rep-
resentation of actions to allow for concurrent actions. These approaches assume
deterministic effects. Prior work in decision-theoretic planning includes work on
multi-dimensional vector action spaces [2], and models based on dynamic merging
of multiple MDPs [6]. There is also a massive literature on concurrent processes,
dynamic logic, and temporal logic. Parts of these lines of research deal with the
specification and synthesis of concurrent actions, including probabilistic ones [8].

In contrast, we focus on parallelizing temporally extended actions. The concurrency
framework described below significantly extends our previous work [5]. We provide
a detailed analysis of three termination schemes for composing parallel action struc-
tures. The three schemes – any, all, and continue – are illustrated in Figure 1. We
characterize the class of policies under each scheme. We also theoretically compare
the optimality of the concurrent policies under each scheme with that of the typical



sequential case. The theoretical results are complemented by an experimental study,
which illustrate the trade-offs between optimality and convergence speed, and the
advantages of concurrency over sequentiality.

2 Concurrent Action Model

Building on SMDPs, we introduce the Concurrent Action Model (CAM)
(S,A, T ,R), where S is a set of states, A is a set of primary actions, T is a
transition probability distribution S × ℘(A) × S ×N → [0, 1], where ℘(A) is the
power-set of the primary actions and N is the set of natural numbers, and R is the
reward function mapping S → <. Here, a concurrent action is simply represented
as a set of primary actions (hereafter called a multi-action), where each primary
action is either a single step action, or a temporally extended action (e.g., modeled
as a closed loop policy over single step actions [7]).

We denote the set of multi-actions that can be executed in a state s by A(s). In
practice, this function can capture resource constraints that limit how many actions
an agent can execute in parallel. Thus, the transition probability distribution in
practice may be defined over a much smaller subset than the power-set of primary
actions (e.g., in the grid world example in Figure 3, the power set is > 100, but the
set of concurrent actions is only ≈ 10).
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Figure 1: Left: Tany termination scheme. Middle: Tall termination scheme. Right:
Tcontinue termination scheme.

A principal goal of this paper is to understand how to define decision epochs for
concurrent processes, since the primary actions in a multi-action may not terminate
at the same time. The event of termination of a multi-action can be defined in many
ways. Three termination schemes are illustrated in Figure 1. In the Tany termination
scheme (Figure 1, left), the next decision epoch is when the first primary action
within the multi-action currently being executed terminates, where the rest of the
primary actions that did not terminate naturally are interrupted (the notion of
interruption is similar to [7]). In the Tall termination scheme (Figure 1, middle),
the next decision epoch is the earliest time at which all the primary actions within
the multi-action currently being executed have terminated.

We can design other termination schemes by combining Tany and Tall : for example,
another termination scheme called continue is one that always terminates based on
the Tany termination scheme, but lets those primary actions that did not terminate
naturally continue running, while initiating new primary actions if they are going
to be useful (Figure 1, right).

A deterministic Markovian (memoryless) policy in CAMs is defined as the mapping
π : S → ℘(A). Note that even though the mapping is defined independent of the



termination scheme, the behavior of a multi-action policy depends on the termi-
nation scheme that is used in the model. To illustrate this, let < π, τ > (called a
policy-termination construct) denote the process of executing the multi-action pol-
icy π using the termination scheme τ ∈ {Tany, Tall}. To simplify notation, we only
use this form whenever we want to explicitly point out what termination scheme is
being used for executing the policy π. For a given Markovian policy, we can write
the value of that policy in an arbitrary state given the termination mechanism used
in the model. Let Θ(π, st, τ) denote the event of initiating the multi-action π(st)
at time t and terminating it according to the τ ∈ {Tany, Tall} termination scheme.
Also let π∗τ denote the optimal multi-action policy within the space of policies over
multi-actions that terminate according to the τ ∈ {Tany, Tall} termination scheme.
To simplify notation, we may alternatively use ∗τ to denote optimality with respect
to the τ termination scheme. Then the optimal value function can be written as:

V ∗τ (st) = E{rt+1 + γrt+2 + ... + γk−1rt+k + γk max
a∈A(st+k)

Q∗τ (st+k,a) |Θ(π∗τ , st, τ)}

where Q∗τ (st+k,a) denotes the multi-action value of executing a in state st+k (ter-
minated using τ) and following the optimal policy π∗τ thereafter.

The policy associated with the continue termination scheme is a history dependent
policy, since for a given state st, the continue policy will select a multi-action such
that it includes the set of all the primary actions of the multi-action executed in the
previous decision epoch that did not terminate naturally in the current state st (we
refer to this set as the continue-set represented by ht). The continue policy is defined
as the mapping πcont : S ×H → ℘(A) in which H is a set of continue-sets ht. Note
that the value function definition for the continue policy should be defined over both
state st and the continue-set ht (represented by ≺ st, ht �), i.e., V πcont(≺ st, ht �).
Let the function A(st, ht) return the set of multi-actions that can be executed in
state st that include the continuing primary actions in ht. Then the continue policy
is formally defined as: πcont(≺ st, ht �) = arg maxa∈A(st,ht) Qπcont(≺ st, ht �,a).

To illustrate this, assume that the current state is st and the multi-action at =
{a1, a2, a3, a4} is executed in state st. Also, assume that the primary action a1

is the first action that terminates after k steps in state st+k. According to the
definition of the continue termination scheme (that terminates based on Tany), the
multi-action at is terminated at time t + k and we need to select a new multi-
action to execute in state st+k (with the continue-set ht+k = {a2, a3, a4}). The
continue policy will select the best multi-action at+k that includes the primary
actions {a2, a3, a4}, since they did not terminate in state st+k (see Figure 1, right).

3 Theoretical Results

In this section we present some of our theoretical results comparing the optimality
of various policies under different termination schemes introduced in the previous
section. In all of these theorems we use the partial ordering relation V π1 ≤ V π2 ↔
π1 ≤ π2, in order to compare different policies. For lack of space, we abbreviated
the proofs. Note that in theorems 1 and 3 which compare the continue policy with
π∗any and π∗all policies, the value function is written over the pair ≺ st, ht � to
be consistent with the definition of the continue policy. This does not influence
the original definition of the value function for the optimal policies in Tany and Tall



termination schemes, since they are independent of the continue-set ht. First, we
compare the optimal multi-action policies based on the Tany termination scheme
and the continue policy.

Theorem 1: For every state st ∈ S, and all continue-set ht ∈ H,
V πcont(≺ st, ht �) ≤ V ∗any (≺ st, ht �).

Proof: By writing the value function definition for each case we have:

V
πcont(≺ st, ht �) = max

a∈A(st,ht)
Q

πcont(≺ st, ht �, a) ≤ max
a∈A(st)

Q
πcont(≺ st, ht �,a)

≤ max
a∈A(st)

Q
∗any (≺ st, ht �,a) = V

∗any (≺ st, ht �)

The inequality holds since the maximization in πcont is over a smaller set (i.e.,
A(st, ht)) which is a subset of the larger set A(st) that is maximized over, in the
π∗any case.

Next, we show that the optimal plans with multi-actions that terminate according
to the Tany termination scheme are better compared to the optimal plans with
multi-actions that terminate according to the Tall termination scheme:

Theorem 2: For every state s ∈ S, V ∗all(s) ≤ V ∗any (s).

Proof: The proof is based on the following lemma which states that if we alter the
execution of the optimal multi-action policy based on Tall (i.e., π∗all) in such a way
that at every decision epoch the next multi-action is still selected from π∗all , but we
terminate it based on Tany then the new policy-termination construct represented
by < ∗all, any > is better than the π∗all policy. Intuitively this makes sense, since
if we interrupt π∗all(s) when the first primary action ai ∈ a = π∗all(s) terminates
in some future state s′, due to the optimality of π∗all , executing π∗all(s′) is always
better than or equal to continuing some other policy such as the one in progress
(i.e., π∗all(s)). Note that the proof is not as simple as in the first theorem since the
two different policies discussed in this theorem (i.e., π∗any and π∗all) are not being
executed using the same termination method.

Lemma 1: For every state s ∈ S, V ∗all(s) ≤ V <∗all,any>(s).

Proof: Let V
∗all

n,any(s) denote the value of following the optimal π∗all policy in state
s, where for the first n decision epochs we use the Tany termination scheme and for
the rest we use the Tall termination scheme. By induction on n, we can show that
V ∗all(s) ≤ V ∗all

n,any(s),∀s ∈ S and for all n. This suggests that if we always terminate
a multi-action π∗all(st) according to the Tany termination scheme, we achieve a
better return; or mathematically V ∗all(s) ≤ limn→∞ V ∗all

n,any(s) = V <∗all,any>(s).

Using Lemma 1, and the optimality of π∗any in the space of policies with termination
scheme according to Tany , it follows that V ∗all(s) ≤ V <∗all,any>(s) ≤ V ∗any (s).

Next, we show that if we execute the continue policy in which at any decision epoch
we always execute the best set of primary actions along with those ones that were
executed in the previous decision epoch and have not terminated yet, we achieve
a better return compared to the case in which we execute the best set of primary
actions, but always wait until all of the primary actions terminate before making a
new decision:

Theorem 3: For every state st ∈ S, and all continue-set ht ∈ H,
V ∗all(≺ st, ht �) ≤ V πcont(≺ st, ht �).

Proof: In π∗all policies, multi-actions are executed until all of the primary actions



of that multi-action terminate. The continue policy, however, may also initiate
new useful primary action in addition to those already running which may achieve
a better return. Let V ∗all

n,cont(≺ st, ht �) denote the value of the altered policy
π∗all that works as follows: for a given state and continue-set ≺ st, ht �, the
policy π∗all(≺ st, ht �) is executed while for the first n decision epochs we use
the continue termination scheme (which means terminating according to Tany , and
selecting the next multi-action according to the continue policy) and for the rest
we use the Tall termination scheme. By induction on n, it can be shown that
V ∗all(≺ st, ht �) ≤ V ∗all

n,cont(≺ st, ht �) for all n. This suggests that as we increase
n, the altered policy behaves more like the continue policy and thus in the limit
we have V ∗all(≺ st, ht �) ≤ limn→∞ V ∗all

n,cont(≺ st, ht �) = V πcont(≺ st, ht �) which
proves the theorem.

Finally we show that the optimal multi-action policies based on Tall termination
scheme are as good as the case where the agent always executes a single primary
action at a time, as it is the case in standard SMDPs. Note that this theorem does
not state that concurrent plans are always better than sequential ones; it simply
says that if in a problem, the sequential execution of the primary actions is the
best policy, CAM is able to represent and find that policy. Let π∗seq represent
the optimal policy in the sequential case, where only one primary action can be
executed at a time:

Theorem 4: For every state s ∈ S, V ∗seq (s) ≤ V ∗all(s), in which V ∗seq (s) is the
value of the optimal policy when the primary actions are executed one at a time
sequentially.
Proof: It suffices to show that sequential policies are within the space of concurrent
policies. This holds since a single primary action can be considered as a multi-action
containing only one primary action whose termination is consistent with either of
the multi-action termination schemes (i.e., in the sequential case both Tany and Tall

termination schemes are same).
Corollary 1 summarizes our theoretical results. It shows how different policies in a
concurrent action model using different termination schemes compare to each other
in terms of optimality.

Corollary 1: In a concurrent action model and a set of termination schemes
{Tany, Tall, continue}, the following partial ordering holds among the optimal pol-
icy based on Tany , the optimal policy based on Tall , the continue policy and the
optimal sequential policy: π∗seq ≤ π∗all ≤ πcont ≤ π∗any .

Proof: This follows immediately from the above theorems.

Figure 2 visually describes the summary of results that we presented in Corollary
1. According to this figure, the optimal multi-action policies based on Tany and
Tall , and also continue multi-action policies dominate (with respect to the partial
ordering relation defined over policies) the optimal policies over the sequential case.
Furthermore, policies based on continue multi-actions dominate the optimal multi-
action policies based on Tall termination scheme, while themselves being dominated
by the optimal multi-action policies based on Tany termination scheme.
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Figure 2: Comparison of policies over multi-actions and sequential primary actions
using different termination schemes.

4 Experimental Results

In this section we present experimental results using a grid world task comparing
various termination schemes (see Figure 3). Each hallway connects two rooms, and
has a door with two locks. An agent has to retrieve two keys and hold both keys
at the same time in order to open both locks. The process of picking up keys is
modeled as a temporally extended action that takes different amount of times for
each key. Moreover, keys cannot be held indefinitely, since the agent may drop a
key occasionally. Therefore the agent needs to find an efficient solution for picking
up the keys in parallel with navigation to act optimally. This is an episodic task,
in which at the beginning of each episode the agent is placed in a fixed position
(upper left corner) and the goal of the agent is to navigate to a fixed position goal
(hallway H3).

- 4 stochastic primitive actions
(Up, Down, Left and Right)
- Fail 10% of times, when fails it will
move randomly to one of the neighbors

- 3 stochastic primitive actions for keys
(get-key, key-nop and putback-key)

- Drop each key 30% of times when holding it

- 2 multi-step key actions (pickup-key),
one for each key

- 8 multi-step navigation actions
(to each room’s 2 hallways)
- One primitive no-op action

Agent H0

H2

H1 H3 (Goal)

Figure 3: A navigation problem that requires concurrent plans. There are two locks
on each door, which need to be opened simultaneously. Retrieving each key takes
different amounts of time.

The agent can execute two types of action concurrently: (1) navigation actions, and
(2) key actions. Navigation actions include a set of one-step stochastic navigation
actions (Up, Left, Down and Right) that move the agent in the corresponding
direction with probability 0.9 and fail with probability 0.1. Upon failure the agent
moves instead in one of the other three directions, each with probability 1

30 . There
is also a set of temporally extended actions defined over the one step navigation
actions that transport the agent from within the room to one of the two hallway cells
leading out of the room (Figure 4 (left)). Key actions are defined to manipulate each



key (get-key, putback-key, pickup-key, etc). Among them pickup-key is a temporally
extended action (Figure 4 (right)). Note that each key has its own set of actions.

Inside the room

Door is open

Door is closed
          &
both keys are ready

Door is closed
         &
keys are not ready

Outside the room

Multi-step hallway action can be taken

Multi-step hallway action can not be taken

Target 
Hallway

S2
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Figure 4: Left: the policy associated with one of the hallway temporally extended
actions. Right: representation of the key pickup actions for each key process.

In this example, navigation actions can be executed concurrently with key actions.
Actions that manipulate different keys can be also executed concurrently. However,
the agent is not allowed to execute more than one navigation action, or more than
one key action (from the same key action set) concurrently. In order to properly
handle concurrent execution of actions, we have used a factored state space defined
by state variables position (104 positions), key1-state (11 states) and key2-state (7
states).

In our previous work we showed that concurrent actions formed an SMDP over
primitive actions [5], which turns out to hold for all the termination schemes de-
scribed above. Thus, we can use SMDP Q-learning to compare concurrent poli-
cies over different termination schemes with the use of this method for purely se-
quential policy learning [7]. After each decision epoch where the multi-action a is
taken in some state s and terminates in state s′, the following update rule is used:
Q(s,a) ← Q(s,a) + α

[

r + γk maxa′∈A(s′) Q(s′,a′)−Q(s,a)
]

, where k denotes the
number of time steps since initiation of the multi-action a at state s and its termi-
nation at state s′, and r denotes the cumulative discounted reward over this period.
The agent is punished by −1 for each primitive action. Figure 5 (left) compares
the number of primitive actions taken until success, and Figure 5 (right) shows the
median number of decision epochs per trial, where for trial n, it is the median of
all trials from 1 to n. These data are averaged over 10 episodes, each consisting of
500, 000 trials. As shown in figure 5 (left), concurrent actions over any termination
scheme yield a faster plan than sequential execution. Moreover, the policies learned
based on Tany (i.e. both π∗any and πcont) are also faster than Tall . Also, π∗any

achieves higher optimality than πcont, however the difference is small.

We conjecture that sequential execution and Tall converge faster compared to Tany,

due to the frequency with which multi-actions are terminated. As shown in Figure
5 (right), Tall makes fewer decisions, compared to Tany. This is intuitive since Tall

terminates only when all of the primary actions in a multi-action are completed,
and hence it involves less interruption compared to learning based on Tany. Note
πcont converges faster than π∗any and it is nearly as good as Tany. . We can think of
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Figure 5: Left: moving median of number of steps to the goal. Right: moving
median of number of multi-action level decision epochs taken to the goal.

πcont as a blend of Tall and Tany . Even though it uses the Tany termination scheme,
it continues executing primary actions that did not terminate naturally when the
first primary action terminates, making it similar to Tall .

5 Future Work

Even though specifying the A(s) set of applicable multi-actions might significantly
reduce the set of choices, we still may need additional mechanisms for efficiently
searching the space of multi-actions that can run in parallel. Also, we can addi-
tionally exploit the hierarchical structure of multi-actions to compile them into an
effective policy over primary actions. These are some of the practical issues that we
will investigate in future work.
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