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Abstract

A new family of kernels for statistical learning is introduced that ex-
ploits the geometric structure of statistical models. Based on the heat
equation on the Riemannian manifold defined by the Fisher informa-
tion metric, information diffusion kernels generalize the Gaussian kernel
of Euclidean space, and provide a natural way of combining generative
statistical modeling with non-parametric discriminative learning. As a
special case, the kernels give a new approach to applying kernel-based
learning algorithms to discrete data. Bounds on covering numbers for
the new kernels are proved using spectral theory in differential geometry,
and experimental results are presented for text classification.

1 Introduction

The use of kernels is of increasing importance in machine learning. When “kernelized,”
simple learning algorithms can become sophisticated tools for tackling nonlinear data anal-
ysis problems. Research in this area continues to progress rapidly, with most of the activity
focused on the underlying learning algorithms rather than on the kernels themselves.

Kernel methods have largely been a tool for data represented as points in Euclidean space,
with the collection of kernels employed limited to a few simple families such as polynomial
or Gaussian RBF kernels. However, recent work by Kondor and Lafferty [7], motivated
by the need for kernel methods that can be applied to discrete data such as graphs, has
proposed the use of diffusion kernels based on the tools of spectral graph theory. One
limitation of this approach is the difficulty of analyzing the associated learning algorithms
in the discrete setting. For example, there is no obvious way to bound covering numbers
and generalization error for this class of diffusion kernels, since the natural function spaces
are over discrete sets.

In this paper, we propose a related construction of kernels based on the heat equation. The
key idea in our approach is to begin with a statistical model of the data being analyzed, and
to consider the heat equation on the Riemannian manifold defined by the Fisher information
metric of the model. The result is a family of kernels that naturally generalizes the familiar
Gaussian kernel for Euclidean space, and that includes new kernels for discrete data by
beginning with statistical families such as the multinomial. Since the kernels are intimately
based on the geometry of the Fisher information metric and the heat or diffusion equation
on the associated Riemannian manifold, we refer to them as information diffusion kernels.



Unlike the diffusion kernels of [7], the kernels we investigate here are over continuous pa-
rameter spaces even in the case where the underlying data is discrete. As a consequence,
some of the machinery that has been developed for analyzing the generalization perfor-
mance of kernel machines can be applied in our setting. In particular, the spectral approach
of Guo etal. [3] is applicable to information diffusion kernels, and in applying this ap-
proach it is possible to draw on the considerable body of research in differential geometry
that studies the eigenvalues of the geometric Laplacian.

In the following section we review the relevant concepts that are required from information
geometry and classical differential geometry, define the family of information diffusion
kernels, and present two concrete examples, where the underlying statistical models are
the multinomial and spherical normal families. Section 3 derives bounds on the covering
numbers for support vector machines using the new kernels, adopting the approach of [3].
Section 4 describes experiments on text classification, and Section 5 discusses the results
of the paper.

2 Information Geometry and Diffusion Kernels

LetS = {p(-|0), 6 € © C R¢} be a d-dimensional statistical model on a set X'. For each
x € X assume the mapping 6 — p(z|6) is C* at each point in the interior of ©. Let

0; = a%- and £g(x) = log p(z | #). The Fisher information matrix [g;; ()] of Satf € © is
given by

9ij(0) = Eg[0ilg 0jlg] = /X O;logp(x|6) 0;logp(x|0)p(x|0)dx Q)

or equivalently as

9i3(6) =4/X 0i/p(@]0) 9;\/p(w]0) da @)

In coordinates 6;, g;;(6) defines a Riemannian metric on ©, giving S the structure of a
d-dimensional Riemannian manifold. One of the motivating properties of the Fisher infor-
mation metric is that, unlike the Euclidean distance, it is invariant under reparameterization.
For detailed treatments of information geometry we refer to [1, 6].

For many statistical models there is a natural way to associate to each data point = a pa-
rameter vector (z) in the statistical model. For example, in the case of text, under the
multinomial model a document is naturally associated with the relative frequencies of the
word counts. This amounts to the mapping which sends a document z to its maximum
likelihood model é(x). Given such a mapping, we propose to apply a kernel on parameter
space, K;(z,z') = Ki(6(z), 6(z)).

More generally, we may associate a data point z with a posterior distribution p (6 | z) under
a suitable prior. In the case of text, this is one way of “smoothing” the maximum likelihood
model, using, for example, a Dirichlet prior. Given a kernel on parameter space, we then
average over the posteriors to obtain a kernel on data:

Kt<:c,x>=/M/Mm<e,o>p<e|:c>p<o |2y do de’ . @3)

It remains to define the kernel on parameter space. There is a fundamental choice: the ker-
nel associated with heat diffusion on the parameter manifold under the Fisher information
metric.

For a manifold M with metric g;; the Laplacian A : L?(M) — L?*(M) is given in local
coordinates by

1 -
A=—2oV 8;y/detgg¥ 9, 4
*detgizj etg g* 9, 4)



where [g%7] = [g;;]7*, generalizing the classical operator divo V =", %. When M is
compact the Laplacian has discrete eigenvalues 0 = Ao < A; < A5 -- - with corresponding
eigenfunctions ¢; satisfying A¢; = —\;#;. When the manifold has a boundary, appropri-

ate boundary conditions must be imposed in order that A is self-adjoint. Dirichlet boundary

conditions set ¢;|5,, = 0 and Neumann boundary conditions require %‘fj = 0 where

v is the outer normal direction. The following theorem summarizes the basic properties for

the kernel of the heat equation (A — 2)u =0 on M.

Theorem 1. Let M be a geodesically complete Riemannian manifold. Then the heat
kernel Ky (z,y) existsand satisfi es (1) K;(z,y) = Ki(y, x), (2) limyo K¢(z,y) = 82(y),
3 (A - %) K =0, (4 Ki(z,y) = fM K, s(z,2)Ks(z,y) dz, and (5) Ki(z,y) =

YZoe M i(@) di(y)-

We refer to [9] for a proof. Properties 2 and 3 imply that K;(x,y) solves the heat
equation in z, starting from y. Integrating property 3 against a function f(y) shows
that et2 f(z) = Sy Ki(z,y) f(y) dy. Therefore, [, [\, Ki(z,y)f(z)f(y)dzdy =
Jog f(@) (€2 f) (z)dz = (f,€e™f) > 0 since e'* is a positive operator; thus K¢(z,y)
is positive definite. Together, these properties show that K; defines a Mercer kernel.
Note that when using such a kernel for classification, the discriminant function y,(z) =
> 2y Ky (@, ;) can be interpreted as the solution to the heat equation with initial tem-
perature yo(z;) = a; y; on labeled data point z;, and yo(z) = 0 on unlabeled points.

The following two basic examples illustrate the geometry of the Fisher information metric
and its associated diffusion kernel: the multinomial corresponds to a Riemannian mani-
fold of constant positive curvature, and the spherical normal family to a space of constant
negative curvature.

2.1 TheMultinomial

The multinomial is an important example of how information diffusion kernels can be
applied naturally to discrete data. For the multinomial family {p(- | #)}, ¢ is an element of
the d-simplex, Ef;l ; = 1. The transformation 6; — 21/6; = z; maps the d-simplex to
the d-sphere of radius 2.

The representation of the Fisher information metric given in equation (2) suggests the
geometry underlying the multinomial. In particular, the information metric is given by
gi;(0) = Y01 0,0,10g 040, log b, = (8;z,8;2) so that the Fisher information corre-
sponds to the inner product of tangent vectors to the sphere, and information geometry for
the multinomial is the geometry of the positive orthant of the sphere. The geodesic distance

between two points 6,6’ is given by

d+1

d(,0') = 2arccos (Z NG 9;) . (5)
1=1

This metric places greater emphasis on points near the boundary, which is expected to be
important for text problems, which have sparse statistics. In general for the heat kernel on
a Riemannian manifold, there is an asymptotic expansion in terms of the parametrices; see
for example [9]. This expands the kernel as

Ki(z,y) = (47t) "% exp <—%> Z ¥i(z,y)t' + O(tN) (6)

Using the first order approximation and the explicit distance for the geodesic distance gives



Figure 1: Example decision boundaries using support vector machines with information
diffusion kernels for trinomial geometry on the 2-simplex (top right) and spherical normal
geometry, d = 2 (bottom right), compared with the standard Gaussian kernel (left).

a simple formula for the approximate information diffusion kernel for the multinomial as

d+1
Ki(6,6") ~ (47rt)*% exp (—% arccos? (Z v/ 0 9;)) (7)
i=1

In Figure 1 this kernel is compared with the standard Euclidean space Gaussian kernel for
the case of the trinomial model, d = 2.

2.2 Spherical Normal

Now consider the statistical family given by p(- |6 = (u,0)) = N (u,014—1) Where p €
R?4-1 is the mean and o is the scale of the variance. A calculation shows that g;;(6) =

ﬁéij. Thus, the Fisher information metric gives © = R4~! x R, the structure of the
upper half plane in hyperbolic space.

The heat kernel on hyperbolic space H? has a closed form [2]. For d = 2m + 1 it is given

by
—-1m™ 1 1 a\" p?
K N _ Il _m2t
(=, @) 2ma™ \/4nt <Sinhp 8p> P < mt 4t> ®

and for d = 2m + 2 the kernel is given by

_(2m+1)*t 2

_1m 5 1 m poo sexp | ——— — =
i1 2 () [
4t \Smpop P cosh s — cosh p

where p = d(x, z') is the geodesic distance between the two points in H?. For d = 1 the
kernel is identical to the Gaussian kernel on R.

If only the mean @ = p is unspecified, then the associated kernel is the standard Gaussian
RBF kernel. In Figure 1 the kernel for hyperbolic space is compared with the Euclidean



space Gaussian kernel for the case of a 1-dimensional normal model with unknown mean
and variance, corresponding to d = 2. Note that the curved decision boundary for the
diffusion kernel makes intuitive sense, since as the variance decreases the mean is known
with increasing certainty.

3 Spectral Boundson Covering Numbers

In this section we prove bounds on the entropy and covering numbers for support vector
machines that use information diffusion kernels; these bounds in turn yield bounds on the
expected risk of the learning algorithms. We adopt the approach of Guo et al. [3], and make
use of bounds on the spectrum of the Laplacian on a Riemannian manifold, rather than
on VC dimension techniques. Our calculations give an indication of how the underlying
geometry influences the entropy numbers, which are inverse to the covering numbers.

We begin by recalling the main result of [3], modifying their notation slightly to conform
with ours. Let M C R? be a compact subset of d-dimensional Euclidean space, and
suppose that K : M x M — R is a Mercer kernel. Denote by Ay > Ay > ... > 0 the

eigenvalues of K, i.e., of the mapping f — [,, K(-,v) f(y) dy, and let 1;(-) denote the
corresponding eigenfunctions. We assume that Cx 2 sup; [|9; |, < oo
Given m points z; € M, the SVM hypothesis class for z = {z;} with weight vector
bounded by R is defined as the collection of functions

Fr(@) ={(z1,.. -, 2m) = ((w, ®(21)), ... (w, ®(zm))), lwl| <R}  (10)

where ®(-) is the mapping from M to feature space defined by the Mercer kernel, and
(-,-y and ||| denote the corresponding Hilbert space inner product and norm. It is of
interest to obtain uniform bounds on the covering numbers A/ (e, Fr(x)), defined as th
size of the smallest e-cover of Fg(z) in the metric induced by the norm ||f|| =

max;=1,...m |f(x;)]. The following is the main result of Guo et al. [3].

Theorem 2. Given an integer n € N, let 5 denote the smallest integer for which

n n2

: A
M < (M) and define ¢, = GCKR\/j* (22) 7 + 532 A Then
D o,y ergm N (e Fr(a)) <.

To apply this result, we will obtain bounds on the indices j using spectral theory in Rie-
mannian geometry. The following bounds on the eigenvalues of the Laplacian are due to
Li and Yau [8].

Theorem 3. Let M beacompact Riemannian manifold of dimension d with non-negative
Ricci curvature, and assume that the boundary of M isconvex. Let 0 < p1 < po < ---
denote the eigenval ues of the L aplacian with Dirichlet boundary conditions. Then

2

c1(d) (%)E < pj < ca(d) <%)% (11)

whereV isthe volume of M and ¢y, and co are constants depending only on the dimension.

Note that the manifold of the multinomial model satisfies the conditions of this theorem.
Using these results we can establish the following bounds on covering numbers for infor-
mation diffusion kernels. We assume Dirichlet boundary conditions; a similar result can
be proven for Neumann boundary conditions. We include the constant V' = vol(/) and
diffusion coefficient ¢ in order to indicate how the bounds depend on the geometry.



Theorem 4. Let M be a compact Riemannian manifold, with volume V', satisfying the
conditions of Theorem 3. Then the covering numbers for the Dirichlet heat kernel K; on

M satisfy
log (€, Fr()) = O ((;) log 5> G)) (12)

Proof. By the lower bound in Theorem 3, the Dirichlet eigenvalues of the heat kernel
.2
Ky(,y), which are given by \; = e~ s, satisfy log A; < —tc1(d) (&) . Thus,

2
1 AL ter O~ (i \d d [j 2

—=1 -7 — =1 >t -1 13
jog( 3 )_ 7 ;( ) ogn > Cld+2<V —I—j ogn (13)

where the second inequality comes from Z{zl P > fOJ P dx = %. Now using the
upper bound of Theorem 3, the inequality j;; < j will hold if

vy

2 2
j+2\d d j\d 2
tco <T) Z —log )\]‘+1 Z tCId—i— 2 v + ;logn (14)
or equivalently
tea (.. 2 ¢ d d+2
Nd — L~ 74 > 21 1
V3 (J(J+ ) di2 ) > 2logn (15)
The above inequality will hold in case
_d_ _d_
9 2 d+2 2 d+ 2 d+2
o | (2o o |(Viar2), 16)
t(CQ —C1 m) tcl

d
2 a+2
since we may assume that co > ¢q; thus, j; < ’761 <Vt—dlogn) -‘ for a new

constant ¢ (d). Plugglng this bound on j* into the expression for €} in Theorem 2
and using 3°7° . e et — =0 (e Jn @ ) we have after some algebra that log (é) =

4
Q ((ﬁ) * log T n) . Inverting the above equation in log n gives equation (12). o
d

We note that Theorem 4 of [3] can be used to show that this bound does not, in fact,
depend on m and . Thus, for fixed ¢ the covering numbers scale as log N (e, F) =

@) (log% (%)) and for fixed ¢ they scale as log N'(e, F) = O (t—%> in the diffusion
time ¢.

4 Experiments

We compared the information diffusion kernel to linear and Gaussian kernels in the con-
text of text classification using the WebKB dataset. The WebKB collection contains some
4000 university web pages that belong to five categories: course, faculty, student, project
and staff. A “bag of words” representation was used for all three kernels, using only the
word frequencies. For simplicity, all hypertext information was ignored. The information
diffusion kernel is based on the multinomial model, which is the correct model under the
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Figure 2: Experimental results on the WebKB corpus, using SVMs for linear (dot-dashed)
and Gaussian (dotted) kernels, compared with the information diffusion kernel for the
multinomial (solid). Results for two classification tasks are shown, faculty vs. course (left)
and faculty vs. student (right). The curves shown are the error rates averaged over 20-fold
cross validation.

(incorrect) assumption that the word occurrences are independent. The maximum likeli-

hood mapping d — é(d) was used to map a document to a multinomial model, simply
normalizing the counts to sum to one.

Figure 2 shows test set error rates obtained using support vector machines for linear, Gaus-
sian, and information diffusion kernels for two binary classification tasks: faculty vs. course
and faculty vs. student. The curves shown are the mean error rates over 20-fold cross val-
idation and the error bars represent twice the standard deviation. For the Gaussian and
information diffusion kernels we tested values of the kernels’ free parameter (o or v/t) in
the set {0.1,0.25,0.5,1,2,3,5}. The plots in Figure 2 use the best parameter value in the
above range.

Our results are consistent with previous experiments on this dataset [5], which have ob-
served that the linear and Gaussian kernels result in very similar performance. However
the information diffusion kernel significantly outperforms both of them, almost always ob-
taining lower error rate than the average error rate of the other kernels. For the faculty
vs. course task, the error rate is halved. This result is striking because the kernels use iden-
tical representations of the documents, vectors of word counts (in contrast to, for example,
string kernels). We attribute this improvement to the fact that the information metric places
more emphasis on points near the boundary of the simplex.

5 Discussion

Kernel-based methods generally are “model free,” and do not make distributional assump-
tions about the data that the learning algorithm is applied to. Yet statistical models offer
many advantages, and thus it is attractive to explore methods that combine data models
and purely discriminative methods for classification and regression. Our approach brings
a new perspective to combining parametric statistical modeling with non-parametric dis-
criminative learning. In this aspect it is related to the methods proposed by Jaakkola and
Haussler [4]. However, the kernels we investigate here differ significantly from the Fisher
kernel proposed in [4]. In particular, the latter is based on the Fisher score V logp (X | é)

at a single point 8 in parameter space, and in the case of an exponential family model it is
given by a covariance Kp(x,z') = 3, (zi — E4[Xi]) (=} — E4[X;]). In contrast, infor-



mation diffusion kernels are based on the full geometry of the statistical family, and yet are
also invariant under reparameterization of the family.

Bounds on the covering numbers for information diffusion kernels were derived for the
case of positive curvature, which apply to the special case of the multinomial. We note that
the resulting bounds are essentially the same as those that would be obtained for the Gaus-
sian kernel on the flat d-dimensional torus, which is the standard way of “compactifying”
Euclidean space to get a Laplacian having only discrete spectrum; the results of [3] are
formulated for the case d = 1, corresponding to the circle S*. Similar bounds for general
manifolds with curvature bounded below by a negative constant should also be attainable.

While information diffusion kernels are very general, they may be difficult to compute in
particular cases; explicit formulas such as equations (8-9) for hyperbolic space are rare.
To approximate an information diffusion kernel it may be attractive to use the parametrices
and geodesic distance d(0, ") between points, as we have done for the multinomial. In
cases where the distance itself is difficult to compute exactly, a compromise may be to ap-
proximate the distance between nearby points in terms of the Kullback-Leibler divergence,
using the relation d?(6,6') ~ D(p(-|8) || p(-]8")).

The primary “degree of freedom” in the use of information diffusion kernels lies in the
specification of the mapping of data to model parameters, = — 6(z). For the multinomial,
we have used the maximum likelihood mapping = — 6(z) = argmax, p (| 8), which is
simple and well motivated. As indicated in Section 2, there are other possibilities. This
remains an interesting area to explore, particularly for latent variable models.
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