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Abstract

Greedy importance sampling is an unbiased estimation technique that re-
duces the variance of standard importance sampling by explicitly search-
ing for modes in the estimation objective. Previous work has demon-
strated the feasibility of implementing this method and proved that the
technique is unbiased in both discrete and continuous domains. In this
paper we present a reformulation of greedy importance sampling that
eliminates the free parameters from the original estimator, and introduces
a new regularization strategy that further reduces variance without com-
promising unbiasedness. The resulting estimator is shown to be effective
for difficult estimation problems arising in Markov random field infer-
ence. In particular, improvements are achieved over standard MCMC
estimators when the distribution has multiple peaked modes.

1 Introduction

Many inference problems in graphical models can be cast as determining the expected
value of a random variable of interest, f, given observations drawn according to a tar-
get distribution P. That is, we are interested in computing Ep(,) f (). Unfortunately, in
natural situations P is usually not in a form that we can sample from efficiently. For ex-
ample, in standard Bayesian network inference P(z) corresponds to P g(x|e) for a given
assignment to evidence variables e in a given network B. It is usually not possible to sam-
ple from this distribution directly, nor efficiently evaluate or even approximate P g(x|e) at
given points [2]. It is therefore necessary to consider restricted architectures or heuristic
and approximate algorithms to perform these tasks [6, 3]. Among the most convenient and
successful techniques for performing inference are stochastic methods which are guaran-
teed to converge to a correct solution in the limit of large random samples [7, 14, 4]. These
methods can be easily applied to complex inference problems that overwhelm deterministic
approaches. The family of stochastic inference methods can be grouped into the indepen-
dent Monte Carlo methods (importance sampling and rejection sampling [7, 4]) and the
dependent Markov Chain Monte Carlo (MCMC) methods (Gibbs sampling, Metropolis
sampling, and Hybrid Monte Carlo) [7, 5, 8, 14]. The goal of all these methods is to simu-
late drawing a random sample from a target distribution P(z) defined by a graphical model
that is hard to sample from directly.

In this paper we improve the greedy importance sampling (GIS) technique introduced in
[12,11]. GIS attempts to improve the variance of importance sampling by explicitly search-
ing for important regions in the target distribution P. Previous work has shown that search



can be incorporated in an importance sampler while maintaining unbiasedness, leading to
improved estimation in simple problems. However, the drawbacks of the previous GIS
method are that it has free parameters whose settings affect estimation performance, and
its importance weights are directed at achieving unbiasedness without necessarily being
directed at reducing variance. In this paper, we introduce a new, parameterless form of
greedy importance sampling that performs comparably to the previous method given its
best parameter settings. We then introduce a new weight calculation scheme that preserves
unbiasedness, but provides further variance reduction by “regularizing” the contributions
each search path gives to the estimator. We find that the new procedure significantly im-
proves the original technique and achieves competitive results on difficult estimation prob-
lems arising in large discrete domains, such as those posed by Boltzmann machines. Below
we first review the generalized importance sampling procedure that forms the core of our
estimators before describing the innovations that lead to improved estimators.

2 Generalized importance sampling

Importance sampling is a useful technique for estimating Ep, f(x) when P cannot
be sampled from directly. The basic idea is to draw independent points 1, ..., z, ac-
cording to a simple proposal distribution ¢ but then weight the points according to
w(z) = P(z)/Q(z). Assuming that we can evaluate P(z) the weighted sample can
be used to estimate desired expectations (Figure 1).> The unbiasedness of this proce-
dure is easy to establish, since for a random variable f the expected weighted value of

f under Q is Eq f(@)w(z) = ¥,cx F@w@)Q@) = ¥,ex f(@)5ia0Q(@) =
> zex f(@)P(x) = Ep(y) f(z). (For simplicity we will focus on the discrete case in this
paper.) The main difficulty with importance sampling is that even though it is an effective
estimation technique when @ approximates P over most of the domain, it performs poorly
when @) does not have reasonable mass in high probability regions of P. A mismatch of this
type results in a high variance estimator since the sample will almost always contains un-
representative points but will intermittently be dominated by a few high weight points. The
idea behind greedy importance sampling (GIS) [11, 12] is to avoid generating under-weight
samples by explicitly searching for significant regions in the target distribution P.

To develop a provably unbiased GIS procedure it is useful to first consider a generaliza-
tion of standard importance sampling that can be proved to yield unbiased estimates: The
generalized importance sampling procedure introduced in [12] operates by sampling de-
terministic blocks of points instead of individual points (Figure 1). Here, to each domain
point z; we associate a fixed block B; = {z;,1, ..., Zi,m, }, Where m; is the length of block
B;. When z; is drawn from the proposal distribution ) we recover block B; and add the
block points to the sample.? Ensuring unbiasedness then reduces to weighting the sampled
points appropriately. To this end, [12] introduces an auxiliary weighting scheme that can
be used to obtain unbiased estimates: To each pair of points z;, ; (such that z; € B;) one
associates a weight a(z;, «;), where intuitively a(z;, ;) is the weight that initiating point
x; assigns to sample point z; in its block B;. The a(z;, ;) values can be arbitrary as long

tUnfortunately, for standard inference problems in graphical models it is usually not possible to
evaluate P(x) directly but rather just P(z) = P(z)Z for some unknown constant Z. However it is
still possible to apply the “indirect” importance sampling procedure shown in Figure 1 by assigning
indirect weights u(z) = P(z)/Q(z) and renormalizing. The drawback of the indirect procedure is
that it is no longer unbiased at small sample sizes, but instead only becomes unbiased in the large
sample limit [4]. To keep the presentation simple we will focus on the “direct” form of importance
sampling described in Figure 1 and establish unbiasedness for that case—Kkeeping in mind that every
extended form of importance sampling we discuss below can be converted to an “indirect” form.

2There is no restriction on the blocks other than that they be finite—blocks can overlap and need
not even contain their initiating point z;—however their union has to cover the sample space X, and
@ cannot put zero probability on initiating points which leaves sample points uncovered.



“Direct” importance sampling

e Draw z1, ..., x5 indep. according to Q.

P(z;)

o Weight each point by w(z;) = RIERE

e Estimate Ep(,) f(x) by
f= 230 fl@w(@:),

“Indirect” importance sampling

e Draw 1, ..., z indep. according to Q.

o Weight each point by u(z;) = Zﬁi

where P = PZ for some unknown Z.

“Generalized” importance sampling

e Draw z1, ..., x5 indep. according to Q.

e For each z;, recover its block
Bi = {xi,l, ceey xi,mi}.

o Create a large sample out of the blocks
ZL1,15-+3L1,m1, e Tp,dyeey Tnympg -

o Weight z; € B; by wi(z;) = QEm ga(zl zj)

o Estimate E,,,) f(x) by

n

F— %Z if(xi,k)Wi(xi,k)

i=1 k=1
e Estimate Ep(,) f(z) by

B 2;1 u(z;)

Figure 1: Basic importance sampling procedures

(direct form)

as they satisfy
Yowiex @i, zi) (i) = 1 1)

for every z;. (Here I(z;,z;) indicates I(z;,z;) = 1if z; € B; and I(z;,z;) = 0 if
z; € B;.) 'Izhat is, for each éestlnatlon point z;, the total of the incoming a-weight has to
sum to 1. In fact, it is quite easy to prove that this yields unbiased estimates [12] since the
expected We|ghted value of f when sampling initiating z; under @ is

Eqen |Layen, F@)wi@)| = Taiex Tujen, F@) o alai, 2)Q:)
> > Iwiz)f(@)Pz)alei) = Y Y Iwi,z;)f(2;)Pe))alw:, ;)

zi€EX z;€X T;€EX T €X
= Yuex F@)P(@) 20, e x I (@i, w5)o(xi, z5) 2o ex f@)P(z;) = Epef(e)

Crucially, this argument does not depend on how the block decomposition is chosen or
how the a-weights are set, so long as they satisfy (1). That is, one could fix any block de-
composition and weighting scheme, even one that depends on the target distribution P and
random variable f, without affecting the unbiasedness of the procedure. Intuitively, this
works because the block structure and weighting scheme are fixed a priori, and unbiased-
ness is achieved by sampling blocks and assigning fair weights to the points. The generality
of this outcome allows one to consider using a wide range of alternative importance sam-
pling schemes, while employing appropriate a-weights to cancel any bias. In particular,
we will determine blocks on-line by following deterministic greedy search paths.

3 Parameter-free greedy importance sampling

Our first contribution in this paper is to derive an efficient greedy importance sam-
pling (GIS) procedure that involves no free parameters, unlike the proposal in [12].
One key mativating principle behind GIS is to realize that the optimal proposal dis-
tribution for estimating Ep(,)f(x) with standard importance sampling is Q*(z) =
|f(z)P(2)|/ > ex | f(2)P(x)], which minimizes the resulting variance [10]. GIS at-
tempts to overcome a poor proposal distribution by explicitly searching for points that
maximally increase the objective | f(x)P(x)| (Figure 2). The primary difficulty in imple-
menting GIS is finding ways to assign the auxiliary weights a(z;, ;) so that they satisfy
the constraint (1). If this can be achieved, the resulting GIS procedure will be unbiased via
the arguments of the previous section. However, the a-weights must not only satisfy the
constraint (1), they must also be efficiently calculable from a given sample.



“Greedy” importance sampling

e Draw z1, ..., z independently from Q. a1l Q12 ... Qin
e For each z;, let z; 1 = z; and: 0 a2 .. an
— Compute block B; = {2i,1,Zi,2, ..., Ti,m, } A= - -
by taking local steps in the direction of
maximum | f(z)P(z)| until a local max. 0 0 .. oann
— Weight each z; € B; by wi(z;) = FOP(1)
g((?; a(ws,2;) WHere o(z;,,) is defined in (2). )P (2)
o Create the final sample from the blocks b= .
L1,1y -y L1,mq, e Ty ey Tnymy, - '
o Estimate Ep . f(z) by f(n)P(n)

f= 130 S fin)wi(zik).

Figure 2: “Greedy” importance sampling procedure (left); Section 4 A matrix (right)

A computationally efficient a-weighting scheme can be determined by distributing weight
in a search tree in a top down manner: Note that to verify (1) for a domain point z ; we have
to consider every search path that starts at some other point z; and passes through « ;. If the
search is deterministic (which we assume) then the set of search paths entering z ; will form
atree. Let T; denote the tree of points that lead into z;; and let a(T;) = 3°, o7, (@, ;).

In principle, the tree will have unbounded depth since the greedy search procedure does not
stop until it has reached a local maximum. Therefore, to ensure a(T;) = 1 we distribute
weight down the tree from level 0 (the root, x;) to levels 1,2,... by a convergent series;
where for simplicity we set the total weight allocated at level k, o(T}), to be a(T}) =
m. This trivially ensures -2, a(T}) = 1.3 (Finite depth bounds will be handled
automatically below.)

Having established the total weight at level £, a(Tf), we must then determine how much
of that weight is allocated to a particular point at that level. Given the entire search tree this
would be trivial, but the greedy search paths will typically provide only a single branch of
the tree. We accomplish the allocation by recursively dividing the weight equally amongst
branches, starting at the root of the tree. Thus, if ;1 is the inward branching factor at the
root, we divide a(Tj’“) by b;4 at the first level. Then, following the path to a desired point
x;, we successively divide the remaining weight at each point by the observed branching
factor b1k 1, birr_2, etc. until we reach z;. In the case b; = 0, x; has no descendants
and we compensate by adding the mass of the missing subtree to z;’s weight. This scheme
is efficient to compute because we require only the branching factors along a given search
path to correctly allocate the weight. This yields the following weighting scheme that runs
in linear time and exactly satisfies the constraint (1): Given a start point z; and a search
path z;, ziy1, ..., Tiyr = x; from z; to z;, we assign a weight a(z;, z;) by

1 ifo; >0
) N bit1bito-bipr(k+1)(k+2) ¢
alwi,zy) = § ifb; =0 @)
bit1biyo---bitr(k+1)

where b;4, denotes the inward branching factor of point z;,. A simple induction proof can
be used to show that ) a(x:, ;) = 1. Therefore, the new a-weighting scheme provides
an efficient unbiased method for implementing GIS that does not use any free parameters.

4 \Variance reduction

While GIS reduces variance by searching, the a-weight correction scheme outlined above
is designed only to correct bias and does not specifically address variance issues. However,

3We merely chose the simplest heavy tailed convergent series available.



there is a lot of leeway in setting the a-weights since the normalization constraint (1) is
quite weak. In fact, one can exploit this additional flexibility to determine minimum vari-
ance unbiased estimators in simple cases. To illustrate, consider a toy domain consisting
of points 1,2,3,...,n, where 0 < f(i)P(i) < f(i + 1)P(i + 1). Assume the search is
constrained to move between adjacent points so that from every initial point the greedy
search will move to the right until it hits point . Any a-weighting scheme for this domain
can be expressed as a matrix, A, shown in Figure 2, where row 4 corresponds to the search
block retrieved by starting at point 7. Note that the constraint (1) amounts to requiring that
the columns of A sum to 1. However, it is the rows of A that correspond to search blocks
sampled durlng estimation. If we assume a uniform proposal distribution ) = ( l)T
then nA¢ gives the column vector of block estimates that correspond to each start pomt
The variance of the overall estimator then becomes equal to the variance of the column
vector nAg. In particular, if each row produces the same estimate, the estimator will have
zero variance. We conclude that zero variance is achieved iff n A¢ equals a constant. Thus,
the unbiasedness constraints behave orthogonally to the zero variance constraints: unbi-
asedness imposes a constraint on columns of A whereas zero variance imposes a constraint
on rows of A. An optimal estimator will satisfy both sets of constraints. Since there are 2n
constraints in total and n(n + 1)/2 variables, one can apparently solve for a zero variance
unbiased estimator (for n > 2). However, it turns out that the constraint matrix does not
have full rank, and it is not always possible to achieve zero bias and variance for given ¢.
Nevertheless, one can obtain an optimal GIS estimator by solving a quadratic program for
the A which minimizes variance subject to satisfying the linear unbiasedness constraints.

The point of this simple example is not to propose a technique that explicitly enumerates
the domain in order to construct a minimum variance GIS estimator. (Although the above
discussion applies to any finite domain—all one needs to do is encode the search topology
in the weight matrix A.) Rather, the point is to show that a significant amount of flexi-
bility remains in setting the a-weights—even after the unbiasedness constraints have been
satisfied—and that this additional flexibility can be exploited to reduce variance.

We can now extend these ideas to a more realistic, general situation: To reduce the variance
of the GIS estimator developed in Section 3, our idea is to equalize the block totals among
different search paths. The main challenge is to adjust a-weights in a way that equalizes
block totals without introducing bias, and without requiring excessive computational over-
head. Here we follow the style of local correction employed in Section 3. First note that
when traversing a path from z; to x;, the blocks sampled by GIS produce estimates of the

formW; = Zf:o %a(m,wm). Now consider an intermediate point z; ¢ in the
search. This point will have been arrived at via some predecessor z;4,—1, but we could
have arrived at z;, via any one of its possible predecessors z,,. We would like to equalize
the block totals that would have been obtained by arriving via any one of these predeces-
sor points. The key to maintaining unbiasedness is to ensure that any weight calculation
performed at a point in a search tree is consistent, regardless of the path taken to reach
that point. Since we cannot anticipate the initial points, it is only convenient to equalize
the subtotals from the predecessors «,, through z;,, and up to the root ;. Let U;, de-
note the total sum obtained by points after z;,; i.e. from z;;,41 to 2;. We equalize the
different predecessor totals by determining factors -y, which satisfy the constraints

f(@p)P(zp) + vp(f(Tire) P(ige) + Uire) = A
over the predecessors x,,. This scales the parent quantity f(z;+¢)P(xit+¢) + Uiy On each
path to compensate for differences between predecessors. The equalization and unbiased-
ness constraints form a linear system whose solution we rescale to obtain positive ~,. The
p are computed starting at the end of the block and working backwards. The results can
be easily incorporated into the GIS procedure by multiplying the original a-weights in (2)
by the product v;4+17vi+2.--vi+e_1. Importantly, at a given search point, any of its predeces-
sors will calculate the same ~y-correction scheme locally, regardless of which predecessor



is actually sampled. This means that the correction scheme is not sample-dependent but
fixed ahead of time. It is easy to prove that any fixed y-weighting scheme that satisfies

ZZ’;{ ~¥p = biye, and is applied to an unbiased a-weighting, will satisfy (1). The benefit

of this scheme is that it reduces variance while preserving unbiasedness.*

5 Empirical results: Markov random field estimation

To investigate the utility of the GIS estimators we conducted experiments on inference
problems in Markov random fields. Markov random fields are an important class of undi-
rected graphical model which include Boltzmann machines as a special case [1]. These
models are known to pose intractable inference problems for exact methods. Typically,
standard MCMC methods such as Gibbs sampling and Metropolis sampling are applied
to such problems, but their success is limited owing to the fact that these estimators tend
to get trapped in local modes [7]. Moreover, improved MCMC methods such as Hybrid
Monte Carlo [8] cannot be directly applied to these models because they require contin-
uous sample spaces, whereas Boltzmann machines and other random field models define
distributions on a discrete domain. Standard importance sampling is also a poor estimation
strategy for these models because a simple proposal distribution (like uniform) has almost
no chance of sampling in relevant regions of the target distribution [7]. Explicitly searching
for modes would seem to provide an effective estimation strategy for these problems.

We consider a generalization of Boltzmann machines that defines a joint distribution over
a set of discrete variables z1, ..., zn, z; € {—1,+1}, according to

P(x) =exp (—7rE(x)) /Z where E(x) =3, s 9ij (23, 25) + 20 gi(2:).-

Here T is the “temperature” of the model and E(x) defines the “energy” of configuration
x; the functions g;; and g; define the local energy between pairs of variables and individ-
ual variables respectively; and Z is a normalization constant. Exact inference in such a
model is difficult because the normalization constant Z is typically unknown. Moreover,
Z is usually not possible to obtain exactly because it is defined as an exponentially large
sum that is not prone simplification.> We experimented with two classes of generalized
Boltzmann machines: generalized Ising models, where the underlying graph is a 2 dimen-
sional grid, and random models, where the graph is generated by randomly choosing links
between variables. For each model, the g function values were chosen randomly from a
standard normal distribution. We considered the objective functions f(x) = E(x) (ex-
pected energy); f(x) = >, 1(xz; = 1) (expected number of 1’s in a configuration); and
f(x) =32, .5 H(zi = z; = 1) (expected number of pairwise “and’s” in a configura-
tion). The latter two objectives are summaries of the quantities needed to estimate gradients
in standard Boltzmann machine learning algorithms [1]. This would seem to be an ideal
model on which to test our methods.

We conducted experiments by fixing a model and temperature and ran the estimators for
a fixed amount of CPU time. Each estimator was re-run 1000 times to estimate their root
mean squared error (RMSE) on small models where exact answers could be calculated,
or standard deviation (STD) on large models where no such exact answer is feasible. We
compared estimators by controlling their run time (given a reasonable C implementation)
not just their sample size, because the different estimators use different computational over-
heads, and run time is the only convenient way to draw a fair comparison. For example, GIS
methods require a substantial amount of additional computation to find the greedy search

4This variance reduction scheme applies naturally to unbiased direct estimators. With indirect
estimators, bias is typically more problematic than variance. Therefore, for indirect GIS we employ
an alternative ~y-weighting scheme that attempts to maximize total block weight.

SInteresting recent progress has been made on developing exact and approximate sampling meth-
ods for the special case of Ising models [9, 15, 13].



RMSE

E(energy) || AvgSS | RMSE@T=10 T=05 T=025 T=01 T=0.05 T=0.025
IS 5094 27.75 68.96 14597  374.04 749.42 1503.73
GlISold 1139 13.89 12.93 12.96 13.35 10.46 12.59
Gl Snew 1015 14.31 13.73 13.94 15.25 11.78 11.03
GlSreg 1015 3.01 4.10 557 6.61 6.20 7.72
Gibbs 36524 0.21 0.37 4.44 21.86 53.44 108.13
Metro 35885 0.28 0.53 5.75 24.56 56.16 122.46
25 25
GlISreg 4x4 —+—

GISreg 6x6 ---*--
GISreg 7x7 8

RMSE

Temperature

Gibbs 4x4

Gibbs 6x6
Gibbs 7x7

0.1

Temperature

Figure 3: Estimating average energy in a random field model (table shows results for 8 x 8).

E(and's) || Avg SS | RMSE@T=10 T=05 T=025 T=01 T=0.05 T=0.025
IS 4764 6.10 8.42 9.60 10.45 10.15 10.15
GlSold 1125 6.33 5.16 4.03 257 0.64 0.43
GISnew 1015 6.09 5.16 4.30 2.85 0.61 0.15
GlSreg 1015 3.56 3.06 2.43 0.90 0.17 0.05
Gibbs 22730 0.33 0.36 0.59 0.70 141 154
Metro 25789 0.37 0.43 0.63 0.76 1.30 141
8 8
GlISreg 4x4 —+— Gibbs 4x4 —+—
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Figure 4: Estimating average “sum of and’s” in a random field model (table shows 8 x 8).

paths and calculate inward branching factors, and consequently they must use substantially
smaller sample sizes than their counterparts to ensure a fair comparison. However, the GIS
estimators still seem to obtain reasonable results despite their sample size disadvantage.
For the GIS procedures we implemented a simple search that only ascends in P(x) not
| f(x)P(x)|, and we only used a uniform proposal distribution in all our experiments. We
also only report results for the indirect versions of all importance samplers (cf. Figure 1).

Figures 3 and 4 show typical outcomes of our experiments. Table 3 shows results for esti-
mating expected energy in an 8 x 8 generalized Ising model when temperature is dropped
from 1.0 to 0.025. Figure 4 shows comparable results for estimating the “sum of and’s”.
Standard importance sampling (IS) is a poor estimator in this domain, even when it is
able to use 4.5 times as many data points as the GIS estimators. IS becomes particularly
poor when the temperature drops. Among GIS estimators, the new, parameter-free version
introduced in Section 3 (GIS_new) compares favorably to the previous technique of [12]
(GIS_old). The regularized GIS from Section 4 (GIS_reg) is clearly superior to either.

Next, to compare the importance sampling approaches to the MCMC methods, we see the
dramatic effect of temperature reduction. Owing to their simplicity (and an efficient im-
plementation), the MCMC samplers were able to gather about 20 to 30 times as many data



points as the GIS estimators in the same amount of time. The effect of this substantial sam-
ple size advantage is that the MCMC methods demonstrate far better performance at high
temperatures; apparently owing to an evidential advantage. However, as the temperature is
lowered, a well known effect takes hold as the the low energy configurations begin to dom-
inate the distribution. At low temperatures the modes around the low energy configurations
become increasingly peaked and standard MCMC estimators become trapped in modes
from which they are unable to escape [8, 7]. This results in a very poor estimate that is
dominated by arbitrary modes. Figures 3 and 4 show the RMSE curves of Gibbs sampling
and GIS_reg, side by side, as temperature is decreased in different models. By contrast to
MCMC procedures, the GIS procedures exhibit almost no accuracy loss as the temperature
is lowered, and in fact sometimes improve their performance. There seems to be a clear
advantage for GIS procedures in sharply peaked distributions. Also they appear to have
much more robustness against varying steepness in the underlying distribution. However,
at warmer temperatures the MCMC methods are clearly superior.

It is important to note that greedy importance sampling is not equivalent to adaptive im-
portance sampling. Sample blocks are completely independent in GIS, but sample points
are not independent in AlS. Nevertheless, GIS can benefit from adapting the proposal dis-
tribution in the same way as standard IS. Clearly we cannot propose GIS methods as a
replacement for MCMC approaches, and in fact believe that useful hybrid combinations
are possible. Our goal in this research is to better understand a novel approach to estima-
tion that appears to be worth investigating. Much work remains to be done in reducing
computational overhead and investigating additional variance reduction techniques.
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