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Abstract 

We present a simple direct approach for solving the ICA problem, 
using density estimation and maximum likelihood. Given a candi­
date orthogonal frame, we model each of the coordinates using a 
semi-parametric density estimate based on cubic splines. Since our 
estimates have two continuous derivatives , we can easily run a sec­
ond order search for the frame parameters. Our method performs 
very favorably when compared to state-of-the-art techniques. 

1 Introduction 

Independent component analysis (ICA) is a popular enhancement over principal 
component analysis (PCA) and factor analysis . In its simplest form, we observe a 
random vector X E IRP which is assumed to arise from a linear mixing of a latent 
random source vector S E IRP, 

(1) X=AS; 

the components Sj, j = 1, ... ,p of S are assumed to be independently distributed. 
The classical example of such a system is known as the "cocktail party" problem. 
Several people are speaking, music is playing, etc., and microphones around the 
room record a mix of the sounds. The ICA model is used to extract the original 
sources from these different mixtures. 

Without loss of generality, we assume E(S) = 0 and Cov(S) = I , and hence 
Cov(X) = AA T. Suppose S* = R S represents a transformed version of S, where R 
is p x p and orthogonal. Then with A * = ART we have X* = A * S* = AR TR S = 
X. Hence the second order moments Cov(X) = AAT = A * A *T do not contain 
enough information to distinguish these two situations. 

Model (1) is similar to the factor analysis model (Mardia, Kent & Bibby 1979), 
where S and hence X are assumed to have a Gaussian density, and inference is 
typically based on the likelihood of the observed data. The factor analysis model 
typically has fewer than p components, and includes an error component for each 
variable. While similar modifications are possible here as well, we focus on the 
full-component model in this paper. Two facts are clear: 



• Since a multivariate Gaussian distribution is completely determined by its 
first and second moments, this model would not be able to distinguish A 
and A * . Indeed, in factor analysis one chooses from a family of factor 
rotations to select a suitably interpretable version. 

• Multivariate Gaussian distributions are completely specified by their 
second-order moments. If we hope to recover the original A, at least p - 1 
of the components of S will have to be non-Gaussian. 

Because of the lack of information in the second moments, the first step in an ICA 
model is typically to transform X to have a scalar covariance, or to pre-whiten the 
data. From now on we assume Cov(X) = I , which implies that A is orthogonal. 

Suppose the density of Sj is Ij, j = 1, ... ,p, where at most one of the Ii are 
Gaussian. Then the joint density of S is 

p 

(2) Is(s) = II Ii(Sj), 
j = l 

and since A is orthogonal, the joint density of X is 
p 

(3) Ix(x) = II Ii(aJ x), 
j=l 

where aj is the jth column of A . Equation (3) follows from S = AT X due to the 
orthogonality of A , and the fact that the determinant in this multivariate transfor­
mation is 1. 

In this paper we fit the model (3) directly using semi-parametric maximum like­
lihood. We represent each of the densities Ii by an exponentially tilted Gaussian 
density (Efron & Tibshirani 1996). 

(4) 

where ¢ is the standard univariate Gaussian density, and gj is a smooth function, 
restricted so that Ii integrates to 1. We represent each of the functions gj by a cubic 
smoothing spline, a rich class of smooth functions whose roughness is controlled by a 
penalty functional. These choices lead to an attractive and effective semi-parametric 
implementation of ICA: 

• Given A, each of the components Ii in (3) can be estimated separately by 
maximum likelihood. Simple algorithms and standard software are avail­
able. 

• The components gj represent departures from Gaussianity, and the ex­
pected log-likelihood ratio between model (3) and the gaussian density is 
given by Ex 2:j gj(aJ X), a flexible contrast function. 

• Since the first and second derivatives of each of the estimated gj are imme­
diately available, second order methods are available for estimating the 
orthogonal matrix A . We use the fixed point algorithms described in 
(Hyvarinen & Oja 1999). 

• Our representation of the gj as smoothing splines casts the estimation prob­
lem as density estimation in a reproducing kernel Hilbert space, an infinite 
family of smooth functions. This makes it directly comparable with the 
"Kernel ICA" approach of Bach & Jordan (2001), with the advantage that 
we have O(N) algorithms available for the computation of our contrast 
function, and its first two derivatives. 



In the remainder of this article, we describe the model in more detail, and evaluate 
its performance on some simulated data. 

2 Fitting the Product Density leA model 

Given a sample Xl, ... ,XN we fit the model (3),(4) by maximum penalized like­
lihood. The data are first transformed to have zero mean vector, and identity 
covariance matrix using the singular value decomposition. We then maximize the 
criterion 

(5) 

subject to 

(6) 

(7) 

T 
a j ak 

J ¢(s)e9j (slds 

bjk 't/j, k 

1 't/j 

For fixed aj and hence Sij = aT Xi the solutions for 9j are known to be cubic splines 
with knots at each of the unique values of Sij (Silverman 1986). The p terms 
decouple for fixed aj, leaving us p separate penalized density estimation problems. 
We fit the functions 9j and directions aj by optimizing (5) in an alternating fashion , 
as described in Algorithm 1. In step (a), we find the optimal 9j for fixed 9j; in 

Algorithm 1 Product Density leA algorithm 

1. Initialize A (random Gaussian matrix followed by orthogonalization). 

2. Alternate until convergence of A, using the Amari metric (16). 

(a) Given A , optimize (5) w.r.t. 9j (separately for each j), using the 
penalized density estimation algorithm 2. 

(b) Given 9j , j = 1, ... ,p, perform one step of the fixed point algorithm 3 
towards finding the optimal A. 

step (b), we take a single fixed-point step towards the optimal A. In this sense 
Algorithm 1 can be seen to be maximizing the profile penalized log-likelihood w.r.t. 
A. 

2.1 Penalized density estimation 

We focus on a single coordinate, with N observations Si, 
Si = af Xi for some k). We wish to maximize 

(8) 

1, ... ,N (where 

subject to J ¢(s)e9(slds = 1. Silverman (1982) shows that one can incorporate the 
integration constraint by using the modified criterion (without a Lagrange multi­
plier) 

N 

(9) ~ l:= {lOg¢(Si) + 9(Si )} - J ¢(s)e9(slds - A J 91/2 (S)ds. 
>=1 



Since (9) involves an integral, we need an approximation. We construct a fine grid 
of L values s; in increments ~ covering the observed values Si, and let 

(10) 
* #Si E (sf - ~/2, Sf + ~/2) 

Y£ = N 

Typically we pick L to be 1000, which is more than adequate. We can then approx­
imate (9) by 

L 

(11) L {Y; [log(¢(s;)) + g(s;)]- ~¢(se)e9(sll} - A J gI/2(s)ds. 
£=1 

This last expression can be seen to be proportional to a penalized Poisson log­
likelihood with response Y;! ~ and penalty parameter A/~, and mean J-t(s) = 
¢(s)e9(s). This is a generalized additive model (Hastie & Tibshirani 1990), with 
an offset term log(¢(s)), and can be fit using a Newton algorithm in O(L) opera­
tions. As with other GAMs, the Newton algorithm is conveniently re-expressed as 
an iteratively reweighted penalized least squares regression problem, which we give 
in Algorithm 2. 

Algorithm 2 Iteratively reweighted penalized least squares algorithm for fitting 
the tilted Gaussian spline density model. 

1. Initialize 9 == O. 

2. Repeat until convergence: 

(a) Let J-t(s;) = ¢(s;)e9(sll, £ = 1, ... ,L, and w£ = J-t(s;). 
(b) Define the working response 

(12) z£ = g(s*) + Ye - J-t(sf) 
£ J-t( sf) 

(c) Update g by solving the weighted penalized least squares problem 

(13) 

This amounts to fitting a weighted smoothing spline to the pairs (sf, ze) 
with weights w£ and tuning parameter 2A/~. 

Although other semi-parametric regression procedures could be used in (13), the 
cubic smoothing spline has several advantages: 

• It has knots at all L of the pseudo observation sites sf' The values sf 
can be fixed for all terms in the model (5), and so a certain amount of 
pre-computation can be performed. Despite the large number of knots 
and hence basis functions , the local support of the B-spline basis functions 
allows the solution to (13) to be obtained in O(L) computations. 

• The first and second derivatives of 9 are immediately available, and are 
used in the second-order search for the direction aj in Algorithm 1. 

• As an alternative to choosing a value for A, we can control the amount of 
smoothing through the effective number of parameters, given by the trace 
of the linear operator matrix implicit in (13) (Hastie & Tibshirani 1990). 



• It can also be shown that because of the form of (9), the resulting density 
inherits the mean and variance of the data (0 and 1); details will be given 
in a longer version of this paper. 

2.2 A fixed point method for finding the orthogonal frame 

For fixed functions g1> the penalty term in (5) does not playa role in the search 
for A. Since all of the columns aj of any A under consideration are mutually 
orthogonal and unit norm, the Gaussian component 

p 

L log ¢(aJ Xi) 

j=l 

does not depend on A. Hence what remains to be optimized can be seen as the 
log-likelihood ratio between the fitted model and the Gaussian model, which is 
simply 

(14) C(A) 

Since the choice of each gj improves the log-likelihood relative to the Gaussian, it is 
easy to show that C(A) is positive and zero only if, for the particular value of A, the 
log-likelihood cannot distinguish the tilted model from a Gaussian model. C(A) has 
the form of a sum of contrast functions for detecting departures from Gaussianity. 
Hyvarinen, Karhunen & Oja (2001) refer to the expected log-likelihood ratio as the 
negentropy, and use simple contrast functions to approximate it in their FastICA 
algorithm. Our regularized approach can be seen as a way to construct a flexible 
contrast function adaptively using a large set of basis functions . 

Algorithm 3 Fixed point update forA. 

1. For j = 1, ... ,p: 

(15) 

where E represents expectation w.r.t. the sample Xi, and aj is the jth 
column of A. 

2. Orthogonalize A: Compute its SVD, A = UDVT , and replace A f- UVT . 

Since we have first and second derivatives avaiable for each gj , we can mimic exactly 
the fast fixed point algorithm developed in (Hyvarinen et al. 2001, page 189) ; see 
algorithm 3. Figure 1 shows the optimization criterion C (14) above, as well as the 
two criteria used to approximate negentropy in FastICA by Hyvarinen et al. (2001) 
[page 184]. While the latter two agree with C quite well for the uniform example 
(left panel), they both fail on the mixture-of-Gaussians example, while C is also 
successful there. 
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Figure 1: The optimization criteria and solutions found for two different examples in lR2 

using FastICA and our ProDenICA. G1 and G2 refer to the two functions used to define 
negentropy in FastICA. In the left example the independent components are uniformly 
distributed, in the right a mixture of Gaussians. In the left plot , all the procedures found 
the correct frame; in the right plot, only the spline based approach was successful. The 
vertical lines indicate the solutions found, and the two tick marks at the top of each plot 
indicate the true angles. 

3 Comparisons with fast ICA 

In this section we evaluate the performance of the product density approach (Pro­
DenICA) , by mimicking some of the simulations performed by Bach & Jordan (2001) 
to demonstrate their Kernel ICA approach. Here we compare ProDenICA only with 
FastICA; a future expanded version of this paper will include comparisons with other 
leA procedures as well. 

The left panel in Figure 2 shows the 18 distributions used as a basis of comparison. 
These exactly or very closely approximate those used by Bach & Jordan (2001) . For 
each distribution, we generated a pair of independent components (N=1024) , and 
a random mixing matrix in ill? with condition number between 1 and 2. We used 
our Splus implementation of the FastICA algorithm, using the negentropy criterion 
based on the nonlinearity G1 (s) = log cosh(s) , and the symmetric orthogonalization 
scheme as in Algorithm 3 (Hyvarinen et al . 2001, Section 8.4.3). Our ProDenICA 
method is also implemented in Splus. For both methods we used five random starts 
(without iterations). Each of the algorithms delivers an orthogonal mixing matrix A 
(the data were pre-whitenea) , which is available for comparison with the generating 
orthogonalized mixing matrix A o. We used the Amari metric(Bach & Jordan 2001) 
as a measure of the closeness of the two frames: 

(16) d(Ao,A) = ~ f.- (L~=1 Irijl -1) + ~ f.- (Lf=1Irijl -1) , 
2p ~ max·lr· ·1 2p ~ max·lr··1 i=1 J"J j=1" "J 

where rij = (AoA - 1 )ij . The right panel in Figure 2 shows boxplots of the pairwise 
differences d(Ao, A F ) -d(Ao , Ap ) (x100), where the subscripts denote ProDenICA 
or FastICA. ProDenICA is competitive with FastICA in all situations, and dom­
inates in most of the mixture simulations. The average Amari error (x 100) for 
FastICA was 13.4 (2.7), compared with 3.0 (0.4) for ProDenICA (Bach & Jordan 
(2001) report averages of 6.2 for FastICA, and 3.8 and 2.9 for their two KernelICA 
methods). 

We also ran 300 simulations in 1R.4, using N = 1000, and selecting four of the 
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Figure 2: The left panel shows eighteen distributions used for comparisons. These include 
the "t", uniform, exponential, mixtures of exponentials, symmetric and asymmetric gaus­
sian mixtures. The right panel shows boxplots of the improvement of ProDenICA over 
FastICA in each case, using the Amari metric, based on 30 simulations in lR? for each 
distribution. 

18 distributions at random. The average Amari error (x 100) for FastICA was 
26.1 (1.5), compared with 9.3 (0.6) for ProDenICA (Bach & Jordan (2001) report 
averages of 19 for FastICA , and 13 and 9 for their two K ernelICA methods). 

4 Discussion 

The lCA model stipulates that after a suitable orthogonal transformation, the data 
are independently distributed. We implement this specification directly using semi­
parametric product-density estimation. Our model delivers estimates of both the 
mixing matrix A, and estimates of the densities of the independent components. 

Many approaches to lCA, including FastICA, are based on minimizing approxima­
tions to entropy. The argument, given in detail in Hyvarinen et al. (2001) and 
reproduced in Hastie, Tibshirani & Friedman (2001), starts with minimizing the 
mutual information - the KL divergence between the full density and its indepen­
dence version. FastICA uses very simple approximations based on single (or a small 
number of) non-linear contrast functions , which work well for a variety of situations, 
but not at all well for the more complex gaussian mixtures. The log-likelihood for 
the spline-based product-density model can be seen as a direct estimate of the mu­
tual information; it uses the empirical distribution of the observed data to represent 
their joint density, and the product-density model to represent the independence 
density. This approach works well in both the simple and complex situations au­
tomatically, at a very modest increase in computational effort. As a side benefit, 



the form of our tilted Gaussian density estimate allows our log-likelihood criterion 
to be interpreted as an estimate of negentropy, a measure of departure from the 
Gaussian. 

Bach & Jordan (2001) combine a nonparametric density approach (via reproducing 
kernel Hilbert function spaces) with a complex measure of independence based on 
the maximal correlation. Their procure requires O(N3) computations, compared to 
our O(N). They motivate their independence measures as approximations to the 
mutual independence. Since the smoothing splines are exactly function estimates 
in a RKHS, our method shares this flexibility with their Kernel approach (and is 
in fact a "Kernel" method). Our objective function, however, is a much simpler 
estimate of the mutual information. In the simulations we have performed so far , 
it seems we achieve comparable accuracy. 
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