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Abstract

The responses of cortical sensory neurons are notoriously variable, with
the number of spikes evoked by identical stimuli varying significantly
from trial to trial. This variability is most often interpreted as ‘noise’,
purely detrimental to the sensory system. In this paper, we propose an al-
ternative view in which the variability is related to the uncertainty, about
world parameters, which is inherent in the sensory stimulus. Specifi-
cally, the responses of a population of neurons are interpreted as stochas-
tic samples from the posterior distribution in a latent variable model. In
addition to giving theoretical arguments supporting such a representa-
tional scheme, we provide simulations suggesting how some aspects of
response variability might be understood in this framework.

1 Introduction

During the past half century, a wealth of data has been collected on the response properties
of cortical sensory neurons. The majority of this research has focused on how the mean
firing rates of individual neurons depend on the sensory stimulus. Similarly, mathematical
models have mainly focused on describing how the mean firing rate could be computed
from the input. One aspect which this research does not address is the high variability of
cortical neural responses. The trial-to-trial variation in responses to identical stimuli are
significant [1, 2], and several trials are typically required to get an adequate estimate of the
mean firing rate.

The standard interpretation is that this variability reflects ‘noise’ which limits the accuracy
of the sensory system [2, 3]. In the standard model, the firing rate is given by

rate ����� stimulus ��� noise 	 (1)

where � is the ’tuning function’ of the cell in question. Here, the magnitude of the noise
may depend on the stimulus. Experimental results [1, 2] seem to suggest that the amount of
variability depends only on the mean firing rate, i.e. ��� stimulus � , and not on the particular
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stimulus that evoked it. Specifically, spike count variances tend to grow in proportion to
spike count means [1, 2]. This has been taken as evidence for something like a Poisson
process for neural firing.

This standard view is not completely satisfactory. First, the exquisite sensitivity and the
reliability of many peripheral neurons (see, e.g. [3]) show that neurons in themselves need
not be very unreliable. In vitro experiments [4] also suggest that the large variability does
not have its origin in the neurons themselves, but is a property of intact cortical circuits.
One is thus tempted to point at synaptic ‘background’ activity as the culprit, attributing the
variability of individual neurons to variable inputs. This seems reasonable, but it is not
quite clear why such modulation of firing should be considered meaningless noise rather
than reflecting complex neural computations.

Second, the above model does a poor job of explaining neural responses in the phenomenon
known as ’visual competition’: When viewing ambiguous (bistable) figures, perception,
and the responses of many neurons with it, oscillates between two distinct states (for a
review, see [5]). In other words, a single stimulus can yield two very different firing rates
in a single neuron depending on how the stimulus is interpreted. In the above model, this
means that either (a) the noise term needs to have a bimodal distribution, or (b) we are
forced to accept the fact that neurons can be tuned to stimulus interpretations, rather than
stimuli themselves. The former solution is clearly unattractive. The latter seems sensible,
but we have then simply transformed the problem of oscillating firing rates into a problem
of oscillating interpretations: Why should there be variability (over time, and over trials) in
the interpretation of a stimulus?

What would be highly desirable is a theoretical framework in which the variability of re-
sponses could be shown to have a specific purpose. One suggestion [6] is that variability
could improve the signal to noise ratio through a phenomenon known as ‘stochastic reso-
nance’. Another recent suggestion is that variability contributes to the contrast invariance
of visual neurons [7].

In this paper, we will propose an alternative explanation for the variability of neural re-
sponses. This hypothesis attempts to account for both aspects of variability described
above: the Poisson-like ‘noise’ and the oscillatory responses to ambiguous stimuli. Our
suggestion is based on the idea that cortical circuits implement Bayesian inference in la-
tent variable models [8, 9, 10]. Specifically, we propose that neural firing rates might be
viewed as representing Monte Carlo samples from the posterior distribution over the latent
variables, given the observed input. In this view, the response variability is related to the
uncertainty, about world parameters, which is inherent in any stimulus. This representa-
tion would allow not only the coding of parameter values but also of their uncertainties.
The latter could be accomplished by pooling responses over time, or over a population of
redundant cells.

Our proposal has a direct connection to Monte Carlo methods widely used in engineering.
These methods use built-in randomness to solve difficult problems that cannot be solved
analytically. In particular, such methods are one of the main options for performing ap-
proximate inference in Bayesian networks [11]. With that in mind, it is perhaps even a bit
surprising that Monte Carlo sampling has not, to our knowledge, previously been suggested
as an explanation for the randomness of neural responses.

Although the approach proposed is not specific to sensory modality, we will here, for con-
creteness, exclusively concentrate on vision. We shall start by, in the next section, review-
ing the basic probabilistic approach to vision. Then we will move on to further explain the
proposal of this contribution.



2 The latent variable approach to vision

2.1 Bayesian models of high-level vision

Recently, a growing number of researchers have argued for a probabilistic approach to
vision, in which the functioning of the visual system is interpreted as performing Bayesian
inference in latent variable models, see e.g. [8, 9, 10]. The basic idea is that the visual
input is seen as the observed data in a probabilistic generative model. The goal of vision
is to estimate the latent (i.e. unobserved or hidden) variables that caused the given sensory
stimulation.

In this framework, there are a number of world parameters that contribute to the observed
data. These could be, for example, object identities, dimensions and locations, surface
properties, lighting direction, and so forth. These parameters are not directly available to
the sensory system, but must be estimated from the effects that they have on the images
projected onto the retinas. Collecting all the unknown world variables into the vector �
and all sensory data into the vector � , the probability that a given set of world parameters
caused a given sensory stimulus is

� � ��� ����� � � ��� � � � � � � 	 (2)

where � � � � is the prior probability of the set of world parameters � , and � � ��� � � describes
how sensory data is generated from the world parameters. The distribution � � ��� ��� is known
as the posterior distribution.

A specific perceptual task then consists of estimating some subset of the world variables,
given the observed data [10]. In face recognition, for example, one wants to know the
identity of a person but one does not care about the specific viewpoint or the direction of
lighting. Note, however, that sometimes one might specifically want to estimate viewpoint
or lighting, disregarding identity, so one cannot just automatically throw out that informa-
tion [10]. In a latent variable model, all relevant information is contained in the complete
posterior distribution � � identity 	 viewpoint 	 lighting � sensory data � . To estimate the identity
one must use the marginal posterior � � identity � sensory data � , obtained by integrating out
the viewpoint and lighting variables. Bayesian models of high-level vision model the visual
system as performing these types of computations, but typically do not specify how they
might be neurally implemented.

2.2 Neural network models of low-level vision

This probabilistic approach has not only been suggested as an abstract framework for vi-
sion, but in fact also as a model for interpreting actual neural firing patterns in the early
visual cortex [12, 13]. In this line of research, the hypothesis is that the activity of indi-
vidual neurons can be associated with hidden state variables, and that the neural circuitry
implements probabilistic inference.1

The model of Olshausen and Field [12], known as sparse coding or independent compo-
nent analysis (ICA) [14], depending on the viewpoint taken, is perhaps the most influen-
tial latent variable model of early visual processing to date. The hidden variables �
	 are
independent and sparse, such as is given, for instance, by the double-sided exponential
distribution � � � 	 � ����
�������� � � � 	 � ��� � � . The observed data vector � is then given by a
linear combination of the ��	 , plus additive isotropic Gaussian noise. That is, � ��� � ��� ,

1Here, it must be stressed that in these low-level neural network models, the hidden variables that
the neurons represent are not what we would typically consider to be the ‘causal’ variables of a visual
scene. Rather, they are low-level visual features similar to the optimal stimuli of neurons in the early
visual cortex. The belief is that more complex hierarchical models will eventually change this.



where � is a matrix of model parameters (weights), and � is Gaussian with zero mean and
covariance matrix �

���
.

How does this abstract probabilistic model relate to neural processing? Olshausen and
Field showed that when the model parameters are estimated (learned) from natural image
data, the basis vectors (columns of � ) come to resemble V1 simple cell receptive fields.
Moreover, the latent variables � 	 relate to the activities of the corresponding cells. Specif-
ically, Olshausen and Field suggested [12] that the firing rates of the neurons correspond
to the maximum a posteriori (MAP) estimate of the latent variables, given the image input:�� �����
	��
� 
�� � � � � ��� .
An important problem with this kind of a MAP representation is that it attempts to repre-
sent a complex posterior distribution using only a single point (at the maximum). Such a
representation cannot adequately represent multimodal posterior distributions, nor does it
provide any way of coding the uncertainty of the value (the width of the peak). Many other
proposed neural representations of probabilities face similar problems [11] (however, see
[15] for a recent interesting approach to representing distributions). Indeed, it has been said
[10, 16] that how probabilities actually are represented in the brain is one of the most impor-
tant unanswered questions in the probabilistic approach to perception. In the next section
we suggest an answer based on the idea that probability distributions might be represented
using response variability.

3 Neural responses as samples from the posterior distribution?

As discussed in the previous section, the distribution of primary interest to a sensory sys-
tem is the posterior distribution over world parameters. In all but absolutely trivial models,
computing and representing such a distribution requires approximative methods, of which
one major option is Monte Carlo methods. These generate stochastic samples from a given
distribution, without explicitly calculating it, and such samples can then be used to approx-
imately represent or perform computations on that distribution [11].

Could the brain use a Monte Carlo approach to perform Bayesian inference? If neural
firing rates are used (even indirectly) to represent continuous-valued latent variables, one
possibility would be for firing rate variability to represent a probability distribution over
these variables. Here, there are two main possibilities:

(a) Variability over time. A single neuron could represent a continuous distribution if
its firing rate fluctuated over time in accordance with the distribution to be repre-
sented. At each instant in time, the instantaneous firing rate would be a random
sample from the distribution to be represented.

(b) Variability over neurons. A distribution could be instantaneously represented if
the firing rate of each neuron in a pool of identical cells was independently and
randomly drawn from the distribution to be represented.

Note that these are not exclusive, both types of variability could potentially coexist. Also
note that both cases lead to trial-to-trial variability, as all samples are assumed independent.

Both possibilities have their advantages. The first option is much more efficient in terms
of the number of cells required, which is particularly important for representing high-
dimensional distributions. In this case, dependencies between variables can naturally be
represented as temporal correlations between neurons representing different parameters.
This is not nearly as straightforward for case (b). On the other hand, in terms of processing
speed, this latter option is clearly preferred to the former. Any decisions should optimally
be based on the whole posterior distribution, and in case (a) this would require collecting
samples over an extended period of time.
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Figure 1: Variance of response versus mean response, on log-log axes, for 4 representative
model neurons. Each dot gives the mean (horizontal axis) and variance (vertical axis) of
the response of the model neuron in question to one particular stimulus. Note that the scale
of responses is completely arbitrary.

We will now explain how both aspects of response variability described in the introduction
can be understood in this framework. First, we will show how a simple mean-variance re-
lationship can arise through sampling in the independent component analysis model. Then,
we will consider how the variability associated with the phenomenon of visual competion
can be interpreted using sampling.

3.1 Example 1: Posterior sampling in ICA

Here, we sample the posterior distribution in the ICA model of natural images, and show
how this might relate to the conspicious variance-mean relation of neural response vari-
ability. First, we used standard ICA methods [17] to estimate a complete basis � for the
40-dimensional principal subspace of � ��� � � -pixel natural image patches. Motivated by
the non-negativity of neural firing rates we modified the model to assume single-sided ex-
ponential priors � � � 	 � ����
������ � 	 � [18], and augmented the basis so that a pair of neurons
coded separately for the positive and negative parts of each original independent compo-
nent. We then took 50 random natural image patches and sampled the posterior distribu-
tions � � � � ��� for all 50 patches � , taking a total of 1000 samples in each case.2

From the 1000 collected samples, we calculated the mean and variance of the response of
each neuron to each stimulus separately. We then plotted the variance against the mean
independently for each neuron in log-log coordinates. Figure 1 shows the plots from 4
randomly selected neurons. The crucial thing to note is that, as for real neurons [1], the
variance of the response is systematically related to the mean response, and does not seem
to depend on the particular stimulus used to elicit a given mean response. This feature of
neural variability is perhaps the single most important reason to believe that the variability
is meaningless noise inherent in neural firing; yet we have shown that something like this
might arise through sampling in a simple probabilistic model.

Following [1, 2], we fitted lines to the plots, modeling the variance as var ����� mean
�

.
Over the whole population (80 model neurons), the mean values of � and � were 	�
 ��

and 	�
 ��� , with population standard deviations 	�
 	�� and 	�
 ��� (respectively). Although these
values do not actually match those obtained from physiology (most reports give values of �
between 1 and 2, and � close to 1, see [1, 2]), this is to be expected. First, the values of these
parameters probably depend on the specifics of the ICA model, such as its dimensionality
and the noise level; we did not optimize these to attempt to fit physiology. Second, and
more importantly, we do not believe that ICA is an exact model of V1 function. Rather, the
visual cortex would be expected to employ a much more complicated, hierarchical, image

2This was accomplished using a Markov Chain Monte Carlo method, as described in the Ap-
pendix. However, the technical details of this method are not very relevant to this argument.



model. Thus, our main goal was not to show that the particular parameters of the variance-
mean relation could be explained in this framework, but rather the surprising fact that such
a simple relation might arise as a result of posterior sampling in a latent variable model.

3.2 Example 2: Visual competition as sampling

As described in the introduction, in addition to the mean-variance relationship observed
throughout the visual cortex, a second sort of variability is that observed in visual compe-
tition. This phenomenon arises when viewing a bistable figure, such as the famous Necker
cube or Rubin’s vase/face figure. These figures each have two interpretations (explana-
tions) that both cannot reasonably explain the image simultaneously. In a latent variable
image model, this corresponds to the case of a bimodal posterior distribution.

When such figures are viewed, the perception oscillates between the two interpretations (for
a review of this phenomenon, see [5]). This corresponds to jumping from mode to mode
in the posterior distribution. This can directly be interpreted as sampling of the posterior.
When the stimulus is modified so that one interpretations is slightly more natural than the
other one, the former is dominant for a relatively longer period compared with the latter
(again, see [5]), just as proper sampling takes relatively more samples from the mode which
has larger probability mass. Although the above might be considered purely ‘perceptual’
sampling, animal studies indicate that especially in higher-level visual areas many neurons
modulate their responses in sync with the animal’s perceptions [5, 19]. This link proves
that some form of sampling is clearly taking place on the level of neural firing rates as well.

Note that this phenomenon might be considered as evidence for sampling scheme (a) and
against (b). If we instantaneously could represent whole distributions, we should be able to
keep both interpretations in mind simultaneously. This is in fact (weak) evidence against
any scheme of representing whole distributions instantaneously, by the same logic.

4 Conclusions

One of the key unanswered questions in theoretical neuroscience seems to be: How are
probabilities represented by the brain? In this paper, we have proposed that probability dis-
tributions might be represented using response variability. If true, this would also present
a functional explanation for the significant amount of cortical neural ‘noise’ observed. Al-
though it is clear that the variability degrades performance on many perceptual tasks of the
laboratory, it might well be that it plays an important function in everyday sensory tasks.
Our proposal would be one possible way in which it might do so.

Do actual neurons employ such a computational scheme? Although our arguments and
simulations suggest that it might be possible (and should be kept in mind), future research
will be needed to answer that question. As we see it, key experiments would compare
measured firing rate variability statistics (single unit variances, or perhaps two-unit covari-
ances) to those predicted by latent variable models. Of particular interest are cases where
contextual information reduces the uncertainty inherent in a given stimulus; our hypothesis
predicts that in such cases neural variability is also reduced.

A final question concerns how neurons might actually implement Monte Carlo sampling
in practice. Because neurons cannot have global access to the activity of all other neurons
in the population, the only possibility seems to be something akin to Gibbs sampling [20].
Such a scheme might require only relatively local information and could thus conceivably
be implemented in actual neural networks.
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Appendix: MCMC sampling of the non-negative ICA posterior

The posterior probability of � , upon observing � , is given by

� � � � ��� �
� � ��� � � � � � �� � ���

��� ��
�� � � �
� � ��� � � � � � �����
	 ��
�� � � �

	
� 
 (3)



Taking the (natural) logarithm yields��� 	 � � � � ��� � ��� 	 � � �
� � ��� ��� � � � ��� � � ����� � � � �	� ��
 � � 	 (4)

where 
 is a vector of all ones. The crucial thing to note is that this function is quadratic in
� . Thus, the posterior distribution has the form of a gaussian, except that of course it is only
defined for non-negative � . Rejection sampling might look tempting, but unfortunately does
not work well in high dimensions. Thus, we will instead opt for a Markov Chain Monte
Carlo approach. Implementing Gibbs sampling [20] is quite straightforward. The posterior
distribution of �
� , given � and all other hidden variables � 	 , is a one-dimensional density
that we will call cut-gaussian,

� � � � � � 	 ��		�� � ��� ��� �� 	 if ���������
��
���� �����! �"$#&%  
')(�+* (%  , if � �.- � ��- � �
	 if ����/�� � (5)

In this case, we have the following parameter values:0 �! �21 �� � � � � ��3 � � �
�� 1 � � � 	 � �! � �� 1 � � 	���� � 	 	 and � � �54 
 (6)

Here, 1 � denotes the 6 :th column of � , and �
3 denotes the current state vector but with � �
set to zero. Sampling from such a one-dimensional distribution is relatively simple. Just as
one can sample the corresponding (uncut) gaussian by taking uniformly distributed samples
on the interval � 	 	 � � and passing them through the inverse of the gaussian cumulative
distribution function, the same can be done for a cut-gaussian distribution by constraining
the uniform sampling interval suitably.

Hence Gibbs sampling is feasible, but, as is well known, Gibbs sampling exhibits problems
when there are significant correlations between the sampled variables. Thus we choose to
use a sampling scheme based on a rotated co-ordinate system. The basic idea is to update
the state vector not in the directions of the component axes, as in standard Gibbs sampling,
but rather in the directions of the eigenvectors of � � � . Thus we start by calculating
these eigenvectors, and cycle through them one at a time. Denoting the current unit-length
eigenvector to be updated 7 we have as a function of the step length � ,��� 	 � � � � � 7 � ��� � const �

� �
�
� � � � � � � � � 7 �8
 � 7 � � � �

� � � � 7 � � � � 7 � � � 
 (7)

Again, note how this is a quadratic function of � . Again, the non-negativity constraints
on � require us to sample a cut-gaussian distribution. But this time there is an additional
complication: When the basis is overcomplete, some of the eigenvectors will be associated
with zero eigenvalues, and the logarithmic probability will be linear instead of quadratic.
Thus, in such a case we must sample a cut-exponential distribution,

� � � ���:9 	 if � �;�����
�� ��� � � 0=< � if � �>- � - � �
	 if � /;� � (8)

Like in the cut-gaussian case, this can be done by uniformly sampling the corresponding
interval and then applying the inverse of the exponential cumulative distribution function.

In summary: We start by calculating the eigensystem of the matrix � � � , and set the
state vector � to random non-negative values. Then we cycle through the eigenvectors
indefinitely, sampling � from cut-gaussian or cut-exponential distributions depending on
the eigenvalue corresponding to the current eigenvector 7 , and updating the state vector �
to � � � 7 . MATLAB code performing and verifying this sampling is available at:

http://www.cis.hut.fi/phoyer/code/samplingpack.tar.gz


