Approximate Linear Programming for
Aver age-Cost Dynamic Programming

Daniela Pucci de Farias
IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120
pucci @rit. edu

Benjamin Van Roy
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305
bvr @t anf or d. edu

Abstract

This paper extends our earlier analysis on approximate linear program-
ming as an approach to approximating the cost-to-go function in a
discounted-cost dynamic program [6]. In this paper, we consider the
average-cost criterion and a version of approximate linear programming
that generates approximations to the optimal average cost and differential
cost function. We demonstrate that a naive version of approximate linear
programming prioritizes approximation of the optimal average cost and
that this may not be well-aligned with the objective of deriving a policy
with low average cost. For that, the algorithm should aim at producing a
good approximation of the differential cost function. We propose a two-
phase variant of approximate linear programming that allows for external
control of the relative accuracy of the approximation of the differential
cost function over different portions of the state space via state-relevance
weights. Performance bounds suggest that the new algorithm is compat-
ible with the objective of optimizing performance and provide guidance
on appropriate choices for state-relevance weights.

1 Introduction

The curse of dimensionality prevents application of dynamic programming to most prob-
lems of practical interest. Approximate linear programming (ALP) aims to alleviate the
curse of dimensionality by approximation of the dynamic programming solution. In [6], we
develop a variant of approximate linear programming for the discounted-cost case which
is shown to scale well with problem size. In this paper, we extend that analysis to the
average-cost criterion.

Originally introduced by Schweitzer and Seidmann [11], approximate linear programming
combines the linear programming approach to exact dynamic programming [9] to ap-



proximation of the differential cost function (cost-to-go function, in the discounted-cost
case) by a linear architecture. More specifically, given a collection of basis functions
¢i,i = 1,..., K, mapping states in the system to be controlled to real numbers, approxi-
mate linear programming involves solution of a linear program for generating an approxi-

mation to the differential cost function of the form Efil ri¢i ().

Extension of approximate linear programming to the average-cost setting requires a differ-
ent algorithm and additional analytical ideas. Specifically, our contribution can be summa-
rized as follows:

Analysis of the usual formulation of approximate linear programming for average-
cost problems. We start with the observation that the most natural formulation of average-
cost ALP, which follows immediately from taking limits in the discounted-cost formulation
and can be found, for instance, in [1, 2, 4, 10], can be interpreted as an algorithm for ap-
proximating of the optimal average cost. However, to obtain a good policy, one needs a
good approximation to the differential cost function. We demonstrate through a counterex-
ample that approximating the average cost and approximating the differential cost function
so that it leads to a good policy are not necessarily aligned objectives. Indeed, the algorithm
may lead to arbitrarily bad policies, even if the approximate average cost is very close to
optimal and the basis functions have the potential to produce an approximate differential
cost function leading to a reasonable policy.

Proposal of avariant of average-cost ALP. A critical limitation of the average-cost ALP
algorithm found in the literature is that it does not allow for external control of how the ap-
proximation to the differential cost function should be emphasized over different portions
of the state space. In situations like the one described in the previous paragraph, when the
algorithm produces a bad policy, there is little one can do to improve the approximation
other than selecting new basis functions. To address this issue, we propose a two-phase
variant of average-cost ALP: the first phase is simply the average-cost ALP algorithm al-
ready found in the literature, which is used for generating an approximation for the optimal
average cost. This approximation is used in the second phase of the algorithm for gener-
ating an approximation to the differential cost function. We show that the second phase
selects an approximate differential cost function minimizing a weighted sum of the dis-
tance to the true differential cost function, where the weights (referred to as state-relevance
weights) are algorithm parameters to be specified during implementation of the algorithm,
and can be used to control which states should have more accurate approximations for the
differential cost function.

Development of bounds linking the quality of approximate differential cost functions
to the performance of the policy associated with them. The observation that the usual
formulation of ALP may lead to arbitrarily bad policies raises the question of how to de-
sign an algorithm for directly optimizing performance of the policy being obtained. With
this question in mind, we develop bounds that relate the quality of approximate differential
cost functions — i.e., their proximity to the true differential cost function — to the ex-
pected increase in cost incurred by using a greedy policy associated with them. The bound
suggests using a weighted sum of the distance to the true differential cost function for com-
paring different approximate differential cost functions. Thus the objective of the second
phase of our ALP algorithm is compatible with the objective of optimizing performance
of the policy being obtained, and we also have some guidance on appropriate choices of
state-relevance weights.

2 Stochastic Control Problems and the Curse of Dimensionality

We consider discrete-time stochastic control problems involving a finite state space S of
cardinality |S| = N. For each state z € S, there is a finite set .4, of available actions.



When the current state is z and action a € A, is taken, a cost g, (z) > 0 is incurred. State
transition probabilities P,(x,y) represent, for each pair (x,y) of states and each action
a € A, the probability that the next state will be y given that the current state is z and the
current actionisa € A,.

A policy u is a mapping from states to actions. Given a policy u, the dynamics of the system
follow a Markov chain with transition probabilities P,,(x,y). For each policy u, we
define a transition matrix P, whose (z, y)th entry is P, (x, y), and a cost vector g,, whose
xth entry is g, («). We make the following assumption on the transition probabilities:

Assumption 1 (Irreducibility). For each pair of states = and y and each policy v, there
is ¢ such that P (z,y) > 0.

In stochastic control problems, we want to select a policy optimizing a given crite-
rion. In this paper, we will employ as an optimality criterion the average cost J,(z) =

lim7_s o0 %E [EtT:O gu(xt)‘xo = x] . Irreducibility implies that, for each policy u, this

limit exists and .J,,(z) = A, for all z — the average cost is independent of the initial state
in the system.

We denote the minimal average cost by A* = min,, A,. For any policy u, we define the
associated dynamic programming operator T, by T',h = g,, + P, h. Note that T, operates
on vectors h € R!S! corresponding to functions on the state space S. We also define the
dynamic programming operator T' by T'"h = min,, T,h. A policy u is called greedy with
respect to A if it attains the minimum in the definition of 7.

An optimal policy minimizing the average cost can be derived from the solution of Bell-
man’s equation Ae + h = Th, where e is the vector of ones. We denote solutions to
Bellman’s equation by pairs (A*, h*). The scalar \* is unique and equal to the the optimal
average cost. The vector h* is called a differential cost function. The differential cost func-
tion is unique up to a constant factor; if A* solves Bellman’s equation, then A* + ke is also
a solution for all &£, and all other solutions can be shown to be of this form. We can ensure
uniqueness by imposing h*(x) = 0 for an arbitrary state z. Any policy that is greedy with
respect to the differential cost function is optimal.

Solving Bellman’s equation involves computing and storing the differential cost function
for all states in the system. This is computationally infeasible in most problems of practi-
cal interest due to the explosion on the number of states as the number of state variables
grows. We try to combat the curse of dimensionality by settling for the more modest goal
of finding an approximation to the differential cost function. The underlying assumption is
that, in many problems of practical interest, the differential cost function will exhibit some
regularity, or structure, allowing for reasonable approximations to be stored compactly.

We consider a linear approximation architecture: given a set of functions ¢; : S — R,i =
1, ...p, we generate approximations of the form

h*(z) ~ h(z,r) = _Z ridi(z). 1)

We define a matrix ® € RIS *P by & =[ ¢1 --- ¢, |, i.e., each of the basis functions
is stored as a column of @, and each row corresponds to a vector ¢(x) of the basis functions

evaluated at a distinct state . We represent A(-,r) in matrix notation as ®r.

In the remainder of the paper, we assume that (a manageable number of) basis functions
are prespecified, and address the problem of choosing a suitable parameter vector . For
simplicity, we choose an arbitrary state — henceforth called state “0”— for which we set
h*(0) = 0; accordingly, we assume that the basis functions are such that ¢;(0) = 0,Vi.



3 Approximate Linear Programming

Approximate linear programming [11, 6] is inspired by the traditional linear programming
approach to dynamic programming, introduced by [9]. Bellman’s equation can be solved
by the average-cost exact LP (ELP):

maxy p A (2)
s.t. e+ h > Th.

Note that the constraints Ae + h > Th can be replaced by XA + h(z) > g.(z) +
Zy P,(z,y)h(y),Vz,a, therefore we can think of problem (2) as an LP.

In approximate linear programming, we reduce the generally intractable dimensions of
the average-cost ELP by constraining h to be of the form ®r. This yields the first-phase
approximate LP (ALP)

maxy,r A (3)
s.t. e+ Or > Tor.

Problem (3) can be expressed as an LP by the same argument used for the exact LP. We
denote its solution by (A1, 71)

The following result is immediate.

Lemma 1. The solution A; of the first-phase ALP minimizes |A* — X| over the feasible
region.

Proof: Maximizing A in (3) is equivalent to maimizing A* — A. Since the first-phase ALP
corresponds to the exact LP (2) with extra constraints h = ®r, we have A < A* for all
feasible A\. Hence A* — X = |\* — |, and the claim follows. O

Lemma 1 implies that the first-phase ALP can be seen as an algorithm for approximating
the optimal average cost. Using this algorithm for generating a policy for the average-
cost problem is based on the hope that approximation of the optimal average cost should
also implicitly imply approximation of the differential cost function. Note that it is not
unreasonable to expect that some approximation of the differential cost function should be
involved in the minimization of |A* — A|; for instance, we know that Ay = \* iff ®r; = h*.

The ALP has as many variables as the number of basis functions plus one, which will
usually amount to a dramatically smaller number of variables than what we had in the ELP.
However, the ALP still has as many constraints as the number of state-action pairs. This
problem is also found in the discounted-cost formulation and there are several approaches
in the literature for dealing with it, including constraint sampling [7] and exploitation of
problem-specific structures for efficient elimination of redundant constraints [8, 10].

Our first step in the analysis of average-cost ALP is to demonstrate through a counterex-
ample that it can produce arbitrarily bad policies, even if the approximation to the average
cost is very accurate.

4 Performance of the first-phase ALP: a counterexample

We consider a Markov process with states 0,1, ..., B, each representing a possible number
of jobs in a queue with buffer of size B. The system state X; evolves according to

X; — 1, with probability ¢(X;),
Xy =<{ X;+1, with probability p,
X4, otherwise.



From state 0, transitions to states 1 and 0 occurs with probabilities p and 1 — p, respectively.
From state B, transitions to states B — 1 and B occur with probabilities ¢(B — 1) and
1 — q(B — 1), respectively. The arrival probability p is the same for all states and we let
p = 0.35. The action to be chosen in each state x is the departure probability or service
rate g(zx), which takes values the set {0.1625,0.325,0.4875,0.65}. The cost incurred at
state z if action g is taken is given by g(z,q) = 2 + 50042

We use basis functions ¢o(z) = 1 — 1o(z), ¢;(z) = z%,i = 1,...,3. For B > 100, the
first-phase ALP yields an approximation A; = 90.3 for the optimal average cost, which
is within 2% of the true value A* = 92.0. However, the average cost yielded by the
greedy policy with respect to ®r; is 9842.2 for B = 100, and goes to infinity as we
increase the buffer size. Figure 1 explains this behavior. Note that ®7; is a very good
approximation for h* over states x < 20, and becomes progressive worse as x increases.
States < 20 correspond to virtually all of the stationary probability under the optimal
policy (P(z < 20) ~ 0.99999), hence it is not surprising that the first-phase ALP yields
a very accurate approximation for A*, as other states contribute very little to the optimal
average cost. However, fitting the optimal average cost and the differential cost function
over states visited often under the optimal policy is not sufficient for getting a good policy.
Indeed, ®r; severely underestimates costs in large states, and the greedy policy drives the
system to those states, yielding a very large average cost and ultimately making the system
unstable, when the buffer size goes to infinity.

It is also troublesome to note that our choice of basis function actually has the potential to
lead to a reasonably good policy — indeed, for r = [—58.7 187.2 29.5 0.3], the greedy
policy associated with ®r has an average cost approximately equal to 96.7, regardless of
the buffer size, which is only about 5.1% larger than the optimal average cost. Hence even
though the first-phase ALP is being given a relatively good set of basis functions, it is
producing a bad approximate differential cost function, which cannot be improved unless
different basis functions are selected.

5 Two-phase average-cost ALP

A striking difference between the first-phase average-cost ALP and discounted-cost ALP
is the presence in the latter of state relevance weights. These are algorithm parameters that
can be used to control the accuracy of the approximation to the cost-to-go function (the
discounted-cost counterpart of the differential cost function) over different portions of the
state space and have been shown in [6] to have a first-order impact on the performance of
the policy being generated. For instance, in the example described in the previous section,
in the discounted-cost formulation one might be able to improve the policy yielded by ALP
by choosing state-relevance weights that put more emphasis on states z > 20. Inspired
by this observation, we propose a two-phase algorithm with the characteristic that state-
relevance weights are present and can be used to control the quality of the differential
cost function approximation. The first phase is simply the first-phase ALP introduced in
Section 3, and is used for generating an approximation to the optimal average cost. The
second phase consists of solving the second-phase ALP for finding approximations to the
differential cost function:

max, cl®or 4
st.  (Tor)(x) > s + (Pr)(z), Vx # 0.

The state-relevance weights ¢ > 0 and A- are algorithm parameters to be specified by the
user and ¢” denotes the transpose of c. We denote the optimal solution of the second-phase
ALP by r5.

We now demonstrate how the state-relevance weights and A, can be used for controlling
the quality of the approximation to the differential cost function. We first define, for any



given A, the function hy, given by the unique solution to [3]
h(z) = (Th)(x) — A, Yz # 0, h(0) = 0. )

If A is our estimate for the optimal average cost, then hy can be seen as an estimate to
the differential cost function h*. Our first result links the difference between A* and A to
the difference between A\* and A, when A < A*. For simplicity of notation, we implicitly
drop from all vectors and matrices rows and columns corresponding to state 0, so that, for
instance, h* corresponds to the original vector h* without the row corresponding to state O,
and P, corresponds to the original matrix P, without rows and columns corresponding
to state 0.

Lemma2. For all A\, we have
hy —h* < (A =X = Pt

Proof: Equation (5), satisfied by A, corresponds to Bellman’s equation for the problem of
finding the stochastic shortest path to state 0, when costs are given by g, (z) — A [3]. Hence
hy corresponds to the vector of smallest expected lengths of paths until state 0. It follows
that

hy < (I—Pyu) " (gu— Xe)
= (I=Pu) M gu—Ae+ (A = Ne)
= W+ =N = Py) e

Note that if A < \*, we also have hy > h*,and |hy — h*| < (A\* = X)(I — Py+)"te

In the following theorem, we show that the second-phase ALP minimizes ||hy, — ®r||1,c
over the feasible region. The weighted L; norm ||-||1,,, which will be used in the remainder
of the paper, is defined as ||A[|1,, = >__ v(z)|h(x)|, forany v > 0.

Theorem 1. Let ro be the optimal solution to the second-phase ALP. Then it minimizes
[[ha, — ®7||1,c OVer the feasible region of the second-phase ALP.

Proof: Maximizing ¢ ®r is equivalent to minimizing c¢T (hy, — ®r). It is a well-known
result that, for all A such that Th — Aze > h, we have h < hy,. It follows that ®r < hy,
over the feasible region of the second-phase ALP, and ®r, minimizes c¢” (hy, — ®r) =

cllhy, — ®r| = ||hry, — O7||1,c- O
For any fixed choice of A, satisfying A < A*, we have
I = @rallyc < [lhay — ®raflye + (A = Ao)eT (I = Pur) e, 6)

hence the second-phase ALP minimizes an upper bound on the weighted L; norm
|[n* — ®ral|1,. Of the error in the differential cost function approximation. Note that
state-relevance weights ¢ determine how errors over different portions of the state space
are weighted in the decision of which approximate differential cost function to select, and
can be used for balancing accuracy of the approximation over different states. In the next
section, we will provide performance bounds that tie a certain L; norm of the difference
between h* and ®r to the expect increase in cost incurred by using the greedy policy with
respect to ®r. This demonstrates that the objective optimized by the second-phase ALP is
compatible with the objective of optimizing performance of the policy being obtained, and
it also provides some insight about appropriate choices of state-relevance weights.

We have not yet specified how to choose A,. An obvious choice is Ay = Ay, since A; is the
estimate for the optimal average cost yielded by the first-phase ALP and it satisfies A\; <
A*, so that bound (6) holds. In practice, it may be advantageous to perform a line search



over A, to optimize performance of the ultimate policy being generated. An important issue
is the feasibility of the second-phase ALP will be feasible for a given choice of A,; for
Ay < Mg, this will always be the case. It can also be shown that, under certain conditions
on the basis functions ®r, the second-phase ALP possesses multiple feasible solutions
regardless of the choice of \s.

6 A performance bound

In this section, we present a bound on the performance of greedy policies associated with
approximate differential cost functions. This bound provide some guidance on appropriate
choices for state-relevance weights.

Theorem 2. Let Assumption 1 hold. For all h, let A, and 7, denote the average cost and
stationary state distribution of the greedy policy associated with A. Then, for all A such
that b < h*, we have A\, < X* + ||h* — h|

1,7p.

Proof: We have A, = 7} gn = 7} (91 + Poh—h) = ] (Th—h), where g5, and P, denote
the costs and transition matrix associated with the greedy policy with respect to A, and we
have used 7 P, = ] in the first equality. Now if h < h*, we have A\, = 7] (Th — h) <
7l (Th* — h) = «F (h* + X* = h) = A* + ||h* = h||1,7,- i

Theorem 2 suggests that one approach to selecting state-relevance weights may be to run
the second-phase ALP adaptively, using in each iteration weights corresponding to the
stationary state distribution associated with the policy generated by the previous iteration.
Alternatively, in some cases it may suffice to use rough guesses about the stationary state
distribution of the MDP as choices for the state-relevance weights. We revisit the example
from Section 4 to illustrate this idea.

Example 1. Consider applying the second-phase ALP to the controlled queue described in
Section 4. We use weights of the form c¢(z) = (1 — p)p®. This is similar to what is done in
[6] and is motivated by the fact that, if the system runs under a ““stabilizing™ policy, there
are exponential lower and upper bounds to the stationary state distribution [5]. Hence ¢(-)
is a reasonable guess for the shape of the stationary distribution. We also let Ao = 0.95);.

Figure 1 demonstrates the evolution of ®r», as we increase p. Note that there is significant
improvement in the shape of ®r, relative to ®r,. The best policy is obtained for p = 0.9,
and incurs an average cost of approximately 96.7, regardless of the buffer size. This cost is
only about 5% higher than the optimal average cost.

7 Conclusions

We have extended the analysis of ALP to the case of minimization of average costs. We
have shown how the ALP version commonly found in the literature may lead to arbitrarily
bad policies even if the choice of basis functions is relatively good; the main problem
is that this version of the algorithm — the first-phase ALP — prioritizes approximation
of the optimal average cost, but does not necessarily yield a good approximation for the
differential cost function. We propose a variant of approximate linear programming —
the two-phase approximate linear programming method — that explicitly approximates
the differential cost function. The main attractive of the algorithm is the presence of state-
relevance weights, which can be used for controlling the relative accuracy of the differential
cost function approximation over different portions of the state space.

Many open issues must still be addressed. Perhaps most important of all is whether there
is an automatic way of choosing state-relevance weights. The performance bound suggest
in Theorem 2 suggests an iterative scheme, where the second-phase ALP is run multiple
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Figure 1: Controlled queue example: Differential cost function approximations as a func-
tion of p. From top to bottom, differential cost function h*, approximations ®r, (with
p =0.9,0.8,0.7), and approximation ®r; .

times state-relevance weights are updated in each iteration according to the stationary state
distribution obtained with the policy generated by the algorithm in the previous iteration. It
remains to be shown whether such a scheme converges. It is also important to note that, in
principle, Theorem 2 holds only for b < h*. If Ay < A*, this condition cannot be verified
for ®r,, and the appropriateness of minimizing ||A* — ®ra||1,¢ is only speculative.
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