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Abstract

This paper gives distribution-free concentration inequalities for the miss-
ing mass and the error rate of histogram rules. Negative association meth-
ods can be used to reduce these concentration problems to concentration
questions about independent sums. Although the sums are independent,
they are highly heterogeneous. Such highly heterogeneous independent
sums cannot be analyzed using standard concentration inequalities such
as Hoeffding’s inequality, the Angluin-Valiant bound, Bernstein’s in-
equality, Bennett’s inequality, or McDiarmid’s theorem.

1 Introduction

The Good-Turing missing mass estimator was developed in the 1940s to estimate the prob-
ability that the next item drawn from a fixed distribution will be an item not seen before.
Since the publication of the Good-Turing missing mass estimator in 1953 [9], this esti-
mator has been used extensively in language modeling applications [4, 6, 12]. Recently
a large deviation accuracy guarantee was proved for the missing mass estimator [15, 14].
The main technical result is that the missing mass itself concentrates — [15] proves that
the probability that missing mass deviates from its expectation by more than � is at most
�������	��

� independent of the underlying distribution. Here we give a simpler proof of the
stronger result that the deviation probability is bounded by �������	� .

A histogram rule is defined by two things — a given clustering of objects into classes and a
given training sample. In a classification setting the histogram rule defined by a given clus-
tering and sample assigns to each cluster the label that occurred most frequently for that
cluster in the sample. In a decision-theoretic setting, such as that studied by Ortiz and Kae-
bling [16], the rule associates each cluster with the action choice of highest performance
on the training data for that cluster. We show that the performance of a histogram rule (for
a fixed clustering) concentrates near its expectation — the probability that the performance
deviates from its expectation by more than � is bounded by ����������

� independent of the
clustering or the underlying data distribution.

2 The Exponential Moment Method

All of the results in this paper are based on the exponential moment method of proving
concentration inequalities. The exponential moment was perhaps first used by Bernstein



but was popularized by Chernoff. Let � be any real-valued random variable with finite
mean. Let ���������
	�� be ������
�	�� if 	�
���� ��� and ��������	�� is 	������ ��� . The
following lemma is the central topic of Chernoff’s classic paper [5].

Lemma 1 (Chernoff) For any real-valued variable � with finite mean ��� ��� we have the
following for any 	 where the “entropy” ��������	�� is defined as below.

����������	�� � � ��!#"%$'& (*) (1)
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	��-, .�/102 	43�57698;:<�+����3=� (2)
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Lemma 1 follows, essentially, from the observation that for 3D
AE we have the following.

�����F
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Lemma 1 is called the exponential moment method because of the first inequality in (4).
The following two observations provide a simple general tool.

Observation 2 Let R be any positive constant satisfying 6%8;:>������3?���A��� ���S3UTGRK3WV for
all 3X
YE . Formula (2) implies that for � 
ZE we have ���M��� ���[T � �'
 � V]\ ��^_R]� .
Observation 3 If ��` , aSaKa , ��b are independent then 698;:<�dcJef� e �W3=�g,hciej6%8;:>��� e ��3?� .
Some further observations also prove useful. Let � be an arbitrary real-valued random
variable. For a discrete distribution the Gibbs distribution � 2 can be defined as follows.

� 2 ���k,A	��g, l:>�����?3?� ���+�m,J	�� �
2 (

There exists a unique largest open interval �+3�n�o O ��3#n�p�qj� (possibly with infinite endpoints)
such that for 3ZrZ�+3 n�o O ��3 n�p�q � we have that :<�+���
3?� is finite. For 3ZrZ�+3 n�o O �H3 n�p�q � we
define the expectation of sW�+�7� at inverse temperature 3 as follows.

� 2 � sW���7�d��, l:>������3=� � @ sW���7� �
2 $HB (5)

Equation (5) can be taken as the definition of � 2 for continuous distributions on � . For3trh��34n�o O �u3#n�p�qj� let v V �+���u3=� be � 2 @ ���w5D� 2 � ���x� V B . The quantity v V �����u3=� is the
Gibbs-variance at inverse temperature 3 . For 3yrX�+3 n�o O �
3 n�p
q � we let z�{;�+� 2Q|%| �<� denote
the KL-divergence from � 2 to � which can be written as follows.

z�{;�+� 2 |9| �<�},J� 2 � ���S3�5~6%8;:>������3=� (6)

Let �+	#n�o O ��	4n�p
qj� be the smallest open interval containing all values of the form � 2 � ���
for 3�r��+3 n�o O ��3 n�p�q � . If the open interval ��	 n�o O �<	 n�p�q � is not empty then � 2 � ��� is a
monotonically increasing function of 3�r��+3 n�o O �>3 n�p�q � . For 	�r���	 n�o O ��	 n�p�q � define3g�+	�� to be the unique value 3 satisfying � 2 � ���g,�	 . For any continuous function s we
now define the double integral � � (� sW�MR]�'� V R to be the function ����	�� satisfying ���+�[�C,�E ,�����+�[�g,iE , and �<� ���+	��g,tsW��	�� where �<�M�+	�� and �<� ����	�� are the first and second derivatives
of � respectively. We now have the following general theorem.

Theorem 4 For any real-valued variable � , any 	 r �+	 n�o O ��	 n�p�q � , and 3 r��3 n�o O ��3 n�p�q � we have the following.

�������?	���, 	#3g�+	���5~698;:<�+����3g��	��
� (7)



, z�{ �M� 2 "%(K) |9| �<� (8)

, ��� (
��� $��

� V	�v V �+����3g� � ��� (9)

698;:<�+���W3=��, ��
}� ���K3�T ���
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 v V ������
 � � V 
 (10)

Formula (9) can be clarified by noting that for | 	�5D��� ��� | small we have the following.

�C������	��}, ��� (��� $��
� V��v V �+����3g� � ����� �+	�5~��� ���x� V� v V �����}E �

Formula (7) is proved by showing that 3g��	�� is the the optimal 3 in (2). Up to sign conven-
tions (7) is the equation for physical entropy in statistical mechanics. Equation (8) follows
from (7) and (6). Equations (9) and (10) then follow from well known equations of sta-
tistical mechanics. An implicit derivation of (9) and (10) can be found in section six of
Chernoff’s original paper [5].

As a simple example of the use of (9), we derive Hoeffding’s inequality. Consider a sum� , c be�� ` � e where the � e are independent and � e is bounded to an interval of width � e .
Note that each � e remains bounded to this interval at all values of 3 . Hence vQV ��� e �g3=�H�� ��� . We then have that v V ������3?� � `� c be�� ` � Ve . Hoeffding’s inequality now follows from
(1) and (9).

3 Negative Association

The analysis of the missing mass and histogram rule error involve sums of variables that are
not independent. However, these variables are negatively associated — an increase in one
variable is associated with decreases in the other variables. Formally, a set of real-valued
random variables ��` , aSaKa , ��b is negatively associated if for any two disjoint subsets � and�

of the integers � l � aSaKa ����� , and any two non-decreasing, or any two non-increasing,
functions s from  �! "#! to  and $ from  %! &'! to  we have the following.

��� sW��� e �)(}r*�_�+$ ���-,j�/.�r � � �?�Y��� sW��� e �)( r0�_� �]��� $��+�1,f�/.�r � �d�
Dubhasi and Ranjan [8] give a survey of methods for establishing and using negative asso-
ciation. This section states some basic facts about negative association.

Lemma 5 Let � ` , aSaKa , � b be any set of negatively associated variables. Let �~�` , aKaSa , ���b
be independent shadow variables, i.e., independent variables such that �X�e is distributed
identically to � e . Let � , c ef� e and �7��, c ef���e . For any set of negatively associated
variables we have ���+���
	��H
Z���+�7�M�
	�� .
Lemma 6 Let � be any sample of 2 items (ball throws) drawn IID from a fixed distribution
on the integers (bins) � l � aSaSaK�43%� . Let 5 �6( � be the number of times integer ( occurs in the
sample. The variables 5j� l � , aSaKa , 5 �73>� are negatively associated.

Lemma 7 For any negatively associated variables � ` , aKaSa , ��b , and any non-decreasing
functions s ` , aSaKa , s b , we have that the quantities s ` �+� ` � , aSaSa , s b ��� b � are negatively asso-
ciated. This also holds if the functions s e are non-increasing.



Lemma 8 Let ��` , aSaSa , ��b be a negatively associated set of variables. Let �Q`�aKaSa , ��b
be 0-1 (Bernoulli) variables such that � e is a stochastic function of � e , i.e., ����� e ,
l | � ` �KaSaKa �
� b � , ����� e , l | � e � . If ����� ` , l | � e � is a non-decreasing function
of � e then � ` , aSaKa , � b are negatively associated. This also holds if ����� e , l | � e � is
non-increasing.

4 The Missing Mass

Suppose that we draw words (or any objects) independently from a fixed distribution over
a countable (but possibly infinite) set of words. We let the probability of drawing word �
be denoted as ��� . For a sample � of 2 draws the missing mass of � , denoted � , is the
total probability mass of the items not occurring in the sample, i.e. �k, c ���� ! � � .

Theorem 9 For the missing mass � as defined above, and for � 
tE , we have the follow-
ing.

�������}��� ���#5 � � 
 ^ 	 2 � V (11)

�������}��� ���_T � � 
 2 � V (12)

To prove theorem 9 let �
� be a Bernoulli variable which is 1 if word � does not occur in
the sample and 0 otherwise. The missing mass can now be written as � , c � � � � � .
The variables ��� are monotonic functions of the word counts so by lemmas 6 and 7 we
have that the �
� are negatively associated. By lemma 5 we can then assume that the
variables � � are independent. The analysis of this independent sum uses the following
general concentration inequalities for independent sums of bounded variables.

Lemma 10 Let � , c �e�� ` � e � e where ��` , aKaSa , � � are independent random variables
with � e rJ� E#� l � and each � e is a non-negative constant. Let 
 e be ��� � e � . For � 
�E we
have the following.

���+������� ���#5 � � 
 � V� c �e�� ` 
 e � Ve (13)

���+������� ���_T � � 
 � V
c �e�� ` � ��N O��� �

(14)

Before proving (13) and (14) we first show how (13) and (14) imply (11) and (12) respec-
tively. For the missing mass �m, c � ���?��� we have the following.


 � ,J���+� � , l �},�� l 5~� � � � � � ����� �
To prove (11) we note that formula (13) implies the following where we use the fact that
for 	�
AE we have � ��( � l \ � � 	�� .

����������� ���#5 � �'
 � V� c � � V� � ����� � 

� V� c � ��� \ � � 2 � ,

�
� 2 � V

To prove (12) we note that formula (14) implies the following.

������� ��� ���_T � �F
 � Vc � � V� \ 6%8 `� � 

� Vc � ��� \ 2 , 2 � V



We now compare (13) and (14) to other well known bounds. Hoeffding’s inequality [11]
yields the following.

������� ��� ���_T � �'
 � � V
c �e�� ` � Ve (15)

In the missing mass application we have that c �e�� ` � Ve can be � � l � which fails to yield (12).
The Srivistav-Stangier bound [17], which itself an improvement on the Angluin-Valiant
bound [1, 10], yields the following for E � � � � where �Sn�p
q is ����� e � e .

�C����� ��� ���[T � �'
 � V	
� n�p�qWc �e�� ` � e 
 e (16)

It is possible to show that in the missing mass application � n�p�q c �e�� ` � e 
 e can be � � l �so this bound does not handle the missing mass. A weaker version of the lower-deviation
inequality (13) can be derived from Bernstein’s inequality [3] (see [7]). However, neither
Bernstein”s inequality nor Bennett’s inequality [2] can handle the upward deviation of the
missing mass.

To prove (13) and (14) we first note the following lemma.

Lemma 11 Let � be a random variable with � rD� E1� l � and let �D� r �*E1� l � be a Bernoulli
variable with ��� �7� ��,t��� ��� . For any such variables � and �~� and any 3 and constant �
we have the following. 6%8;:>�+� ����3=�'�G698;:<�M� � � ��3=�
This lemma follows from the observation that for any convex function s on the interval� E1� l � we have that sW�+	�� is less than � l 57	��
sW�ME �QTy	�sW� l � and so we have the following.

�A@ � 2 � $�B �Z�i@x� l 57�~� TX� �
2 � B ,�� l 5~��� ���x�QTy��� ��� �

2 � ,i�tI � 2 � $��xL
Lemma 11 and equation (2) now imply the following which implies that for the proof of
(13) and (14) we can assume without loss of generality that the variables � e are Bernoulli.

Lemma 12 Let � , c e�� e � e with � e r � E1� l � with the variables � e independent. Let���}, c e�� e ���e where � e r �*E#� l � with ��� ���e � = ��� � e � . For any such � , �7� , and � we
have the following. ���+���
	��H
Z���+� � �
	��
.

To prove (13) let � ,�c �e�� ` � e � e where the � e are independent Bernoulli variables. For3D�ZE we have the following.

v V ��� e ��3=�H�A� 2 �+� e , l �'� 
 e
So we have v V �+���
3?���Fcie � Ve 
 e . Formula (13) now follows from (9). Formula (14)
follows from observations 2 and 3 and the following lemma of Kearns and Saul [13].

Lemma 13 (Kearns&Saul) For a Bernoulli variable � we have the following where 
 is����� , l � .
698;:<� � �g��3?� � � 
g� � � �K3UT � l 5 � 
<� � V^}698 ` � �� 3 V (17)

� � 
g� � � �K3UT � V^}698 `� 3 V (18)



5 Histogram Rule Error

Now we consider the problem of learning a histogram rule from an IID sample of pairs� 	=�����>r����
	 drawn from a fixed distribution � on such pairs. The problem is to find
a rule � mapping � to the two-element set �]E1� l � so as to minimize the expectation of the
loss �
�
�Q�+	�� ���1� where � is a given loss function from �*E#� l ����	 to the interval � E1� l � . In the
classification setting one typically takes 	 to be �*E1� l � . In the decision-theoretic setting �
is the hidden state and can be arbitrarily complex and �
���=��	�� ���[� is the cost of taking action�=��	�� in the presence of hidden state � . In the general case (covering both settings) we
assume only �=��	��'r �]E1� l � and �j���=��	�� ���1�HrD� E1� l � .
We are interested in histogram rules with respect to a fixed clustering. We assume a given
cluster function � mapping � to the integers from l to � . We consider a sample � of 2
pairs drawn IID from a fixed distribution on ����	 . For any cluster index . , we define � ,
to be the subset of the sample consisting of pairs

� 	Q����� such that � ��	��g, . . We define 5j��. �
to be | � , | . For any cluster index . and ��r �*E#� l � we define ��,j���;� and ���, � �;� as follows.

�� , � �u�g, l5 ��._�
�

� 	Q����� � !�� �
���<���1� � � , � �;�g,t� � 	Q��������� ! � "%(*) � , � �
� �>���1� �
If 5j��._�},JE then we define ���, � �;� to be 1. We now define the rule �� and �"! from class index
to labels as follows.

��Q��. �}, �$# % �'&98� �)( 
 & `�* ���,j� �;� � � ! ��._�g, �+#�% �,&98� �)( 
 & ` * ��, ���;�
Ties are broken stochastically with each outcome equally likely so that the rule �-! is a
random variable only partially determined by the sample � . We are interested in the gen-
eralization loss of the empirical rule �� .

�
� ��4�g,i� � 	=�������-� I ��� ��Q��� ��	��
� ���1� L
Theorem 14 For �
�.���� defined as above we have the following for positive � .

�0/1�
� ���� � � I �
� ��#� L 5 � 2 
 2 � V3 (19)

�0/1�
� ���� � � I �
� ��#� L T � 2 
 2 � V4 (20)

To prove this we need some additional terminology. For each class label . define � , to be
the probability over selecting a pair

� 	Q����� that � ��	��g, . . Define { , to be � , � l 55�"!f��._�
�?5��, ���"!j��._�
� . In other words, {), is the additional loss on class . when �� assigns the wrong
label to this class. Define the random variable ��, to be 1 if ��=��._��6,7�8!j��._� and 0 otherwise.
The variable � , represents the statement that the empirical rule is “wrong” (non-optimal)
on class . . We can now express the generalization loss of �� as follows.

�
�9����},:�
��� ! � T �
e � e { e � e (21)

The variable � , is a monotone stochastic function of the count 5j��._� — the probability
of error declines monotonically in the count of the class. By lemma 8 we then have that
the variables � e are negatively associated so we can treat them as independent. To prove
theorem 14 we start with an analysis of ����� , , l � .
Lemma 15 ���+� , , l �'�

	
� �<;�>= � � ��? ��



Proof: To prove this lemma we consider a threshold �~� 2 � , and show the following.

�����-, , l � � ��� 5 ��._�H� �Q� Ty���+�1,;, l | 5j��._�'
 �Q� (22)

��� 5j��._�H� �Q� � � � �� � � � � ���� � � 
 � � (23)

���+� , , l | 5 ��._�'
 �Q� � � � � V b ��� ���� � (24)

Formula (23) follows by the Angluin-Valiant bound [1, 7].1 To prove (24) we note that if�-, , l then either ���, ���"!f��. ���H
 �
���"! ��._�
� T { \ � or ���,f� l 5<�"! ��. ���H� �
� l 5<�8! ��._�
�15�{ \ � . By
a combination of Hoeffding’s inequality and the union bound we have that the probability
that one of these two conditions holds is bounded by the left hand side of (24). Lemma 15
now follows by setting � to �� 2 � , and noting that { , � l .
We now prove (19) using lemma 15 and (10). For 	Y����� ��� we have 3g��	�����E and for3D�ZE we have the following.

v V �+� Ve { Ve �1,j��3?��, � Ve { Ve � 2 ���-,;, l � � l 5~� 2 ���-,;, l �
�� � Ve { Ve � 2 ��� , , l �'�Y� Ve { Ve � 
 ��� , , l �'�A� Ve { Ve
	
� � ;� = � �+� ? ��

Since �-, is bounded to the interval � E1� l � we have that v V �+� e { e �-,f� 3=� is also bounded
by � Ve { Ve \ ^ . By (10) we then have the following for 3���E where 	�,m� l�
 \ 	 �_6%8 l � . In
deriving (27) we use the fact that 	 � �
� ( is a monotonically decreasing function of 	 for	�� l \ � .

��������������� �"!$#$% �'&(�*),+- . �0/21�3/54 3/06�7 � / +8 �:9�;�< ;� =�= > �@? �� 2BA � 3 (25)

C !D#�% �'&E�F) +-HGI �= > � ? ��KJML
1 /NPO N 1 / 4 3/8 Q ) �= > � ? ��SRML

1 /N / N 1 / 4 3/ 9T;�< ;�>=T= > �@? �� 2BUV � 3
(26)

�W!D#�% �'&E�*),+- GI �= > �X? ��SJYL
1 /N /[Z 8 2 ) �= > �@? ��ERYL

1 /N / 9 Z ;�< ;� = L 2BUV � 3
(27)

C !D#�% �'&E�*),+- . �0/ 1 /N /[Z 8 2�A � 3 (28)C !D#�% �'&E�*) +- / Z8 N 2 � 3 (29)

Formula (19) now follows from (29) and a downward variant of observation 2. The proof
of (20) is similar but uses (18). For 3X
YE we have the following where 	 is l�
 � � T�698 	 � \ 	 .���������������\� !$#�% �]&E�*) +-^GI �= > � ? ��KJYL

1 /NPO N 1 / 4 3/8 Q ) �= > � ? ��SRYL
1 /N . N 1 / 4 3/- �:_`Xa N 1 / 4 3/ b ���c9 � A�UV � 3

� !$#�% �]&E�*)d+- GI �= > �X? ��KJYL
1 /N /[Z 8 2 ) �= > �@? ��ERYL

1 /N . +- �:_`Xa bfe g _L � AhUV � 3
1The downward deviation Angluin-Valiant bound used here follows from (9) and the observation

that for a Bernoulli variable i and
�j�"k

we have l 3 � i �
���:� 1 � i C + � .



C ! # % �]&E�*) +- . � / 1 /N / Z 8 2�A � 3 (30)C ! # % �]&E�*)d+- / Z8 N 2 � 3 (31)

Formula (20) now follows from (31) and observation 2.
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