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Abstract

We describe a method for learning sparse multiscale image repre-
sentations using a sparse prior distribution over the basis function
coefficients. The prior consists of a mixture of a Gaussian and a
Dirac delta function, and thus encourages coefficients to have exact
zero values. Coeflicients for an image are computed by sampling
from the resulting posterior distribution with a Gibbs sampler. The
learned basis is similar to the Steerable Pyramid basis, and yields
slightly higher SNR for the same number of active coefficients. De-
noising using the learned image model is demonstrated for some
standard test images, with results that compare favorably with
other denoising methods.

1 Introduction

Increasing interest has been given to the use of overcomplete representations for
natural scenes, where the number of basis functions exceeds the number of image
pixels. One reason for this is that overcompleteness allows for more stable, and thus
arguably more meaningful, representations in which common image features can be
well described by only a few coeflicients, regardless of where they are located in
the image, how they are rotated, or how large they are [8, 6]. This may translate
into gains in coding efficiency for image compression, and improved accuracy for
tasks such as denoising. Overcomplete representations have been shown to reduce
Gibbs-like artifacts common to thresholding methods employing critically sampled
wavelets [4, 3, 9].

Common wavelet denoising approaches generally apply either a hard or soft-
thresholding function to coeflicients which have been obtained by filtering an image
with a the basis functions. One can view these thresholding methods as a means
of selecting coefficients for an image based on an assumed sparse prior on the co-
efficients [1, 2]. This statistical framework provides a principled means of selecting
an appropriate thresholding function. When such thresholding methods are applied
to overcomplete representations, however, problems arise due to the dependencies
between coeflicients. Choosing optimal thresholds for a non-orthogonal basis is still



an unsolved problem. In one approach, orthogonal subgroups of an overcomplete
shift-invariant expansion are thresholded separately and then the results are com-
bined by averaging [4, 3]. In addition, if the coefficients are obtained by filtering
the noisy image, there will be correlations in the noise that should be taken into
account.

Here we address two major issues regarding the use of overcomplete representations
for images. First, current methods make use of various overcomplete wavelet bases.
What is the optimal basis to use for a specific class of data? To help answer this
question, we describe how to adapt an overcomplete wavelet basis to the statis-
tics of natural images. Secondly, we address the problem of properly inferring the
coefficients for an image when the basis is overcomplete. We avoid problems asso-
ciated with thresholding by using the wavelet basis as part of a generative model,
rather than a simple filtering mechanism. We then sample the coefficients from
the resulting posterior distribution by simulating a Markov process known as a
Gibbs-sampler.

Our previous work in this area made use of a prior distribution peaked at zero and
tapering away smoothly to obtain sparse coefficients [7]. However, we encountered
a number of significant limitations with this method. First, the smooth priors
do not force inactive coefficients to have values exactly equal to zero, resulting in
decreased coding efficiency. Efficiency may be partially regained by thresholding
the near-zero coefficients, but due to the non-orthogonality of the representation
this will produce sub-optimal results as previously mentioned. The mazimum a
posteriori (MAP) estimate also introduced biases in the learning process. These
effects can be partially compensated for by renormalizing the basis functions, but
other parameters of the model such as those of the prior could not be learned.
Finally, the gradient ascent method has convergence problems due to the power
spectrum of natural images and the overcompleteness of the representation. Here we
resolve these problems by using a prior distribution which is composed of a mixture
of a Gaussian and a Dirac delta function, so that inactive coefficients are encouraged
to have exact zero values. Similar models employing a mixture of two Gaussians
have been used for classifying wavelet coefficients into active (high variance) and
inactive (low variance) states [2, 5]. Such a classification should be even more
advantageous if the basis is overcomplete. A method for performing Gibbs-sampling
for the Delta-plus-Gaussian prior in the context of an image pyramid is derived, and
demonstrated to be effective at obtaining very sparse representations which match
the form of the imposed prior. Biases in the learning are overcome by sampling
instead of using a MAP estimate.

2 Wavelet image model

Each observed image I is assumed to be generated by a linear superposition of basis
functions which are columns of an N by M weight matrix W, with the addition of
Gaussian noise v:

I=Wa-+y, (1)

where I is an N-element vector of image pixels and a is an M-element vector of basis
coefficients. In order to achieve a practical implementation which can be seamlessly
scaled to any size image, we assume that the basis function matrix W is composed of
a small set of spatially localized mother wavelet functions ;(x, y), which are shifted
to each position in the image and rescaled by factors of two. Unlike typical wavelet
transforms which use a single 1-D mother wavelet function to generate 2-D functions
by inner product, we do not constrain the functions ;(z,y) to be 1-D separable.



The functions v¢;(z,y) provide an efficient way to perform computations involving
W by means of convolutions. Basis functions of coarser scales are produced by
upsampling the ¥;(x,y) functions and blurring with a low-pass filter ¢(z,y), also
known as the scaling function. The image model above may be re-expressed to
make these parameters explicit:

I(z,y) = go(z,y)Jrl/(z,y) 2)
HH *Qlx al(x * ; (x _
Aoy = { C[L.lg(;,ﬁ(y:;.7y)T2} oz, y) + 32, ai(z,y) * Yi(z,y) ﬁié_i 3)

where the coefficients al(x,y) are indexed by their position (z,y), band (i) and
level of resolution () within the pyramid (I = 0 is the highest resolution level). The
symbol * denotes convolution, and T 2 denotes upsampling by two and is defined as

z Yy

flz,y) 12 = { f(5,%) xeven & yeven @

0 otherwise

The probability of generating an image I, given coefficients a, parameters 6, assum-
ing Gaussian i.i.d. noise v (with variance 1/\y), is
1 Y
P(Ila,§) = —e 3 /-Wal* (5)
Zxy

The prior probability over each coefficient a; is modeled as a mixture of a Gaussian
distribution and a Dirac delta function §(a;). A binary state variable s; for each
coefficient indicates whether the coefficient a; is active (any real value), or inactive
(zero). The probability of a coefficient vector a given a binary state vector s and
model parameters 8 = {W, Ay, A\a, Ag} is defined as

P(als,0) = HP(ai|si,9) (6)

Aay .
leai e~ T i g =1 (7)

P(QZ|SZ,0) =

where A, is a vector with elements A,,. The probability of a binary state s is

1
P(s|6) = Ze*%STAsS. (8)

Matrix Ag is assumed to be diagonal (for now), with nonzero elements A,,. The
form of the prior is shown graphically in figure 1. Note that the parameters W, A,,
and Ag are themselves parameterized by a much smaller set of parameters. Only
the mother wavelet function v;(z,y) and a single A, and A,, parameter need to be
learned for each wavelet band, since we are assuming translation invariance.

The total image probability is obtained by marginalizing over the possible coefficient
and state values:

Plo) =Y P(s|o) / P(Ia,0)P(als,0) da 9)

3 Sampling and Inference

We show how to sample from the posterior distribution P(a,s|I,#) for an image
I using a Gibbs sampler. For each coefficient and state variable pair (a;,s;), we



107
10-2
10°
10 A
wwvmﬁ’ W%
s !

5| 4

Pl N
ol im‘w
ol I s ‘ ‘ ‘ L
0. 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 1: Prior distribution (dashed), and histogram of samples taken from the
posterior distribution (solid) plotted for a single coefficient. The y-axis is plotted
on a log scale.

sample from the posterior distribution conditioned on the image and the remaining
coefficients a;: P(ay, $;|1, a3, 7,0). After all coefficients (and state variables) have
been updated, this process is repeated until the system has reached equilibrium. To
infer an optimal representation a for an image I (for coding or denoising purposes),
we can either average a number of samples to estimate the posterior mean, or with
minor adjustment locate a posterior maximum by raising the posterior distribution
to a power (1/T") and annealing T to zero. To sample from P(ay, s;|I, a3, s;,0), we
first draw a value for s; from P(s;|I, a3, s7,0), then draw a; from P(a;|s;, I, a3, s3,6).

For P(s;|1,a;,s;,0) we have:

P(si|I, a;,8;,0) o P(si|s;,9)/P(I\ai,ag,O)P(ai\si,G)dai (10)
where
1y
Plslsn0) = g% (1)
P(|a;,a;,0) = i e Ft @m0 (12)
and :

Wi . (I — Waizo)
W2

A, = An [W, |2, b, = (13)

The notation W, denotes column ¢ of matrix W, |W;| is the length of vector W;,
and a;—g denotes the current coefficient vector a except with a; set to zero. Thus,
b; denotes the value for a; which minimizes the reconstruction error (while holding
a; constant). Since s; can only take on two values, we can compute equation 10 for

s; = 0 and s; = 1, integrating over the possible coefficient values. This yields the
following sigmoidal activation rule as a function of b;:

1
P(si=1|L,a3,5;,0) = [ (14)
where
1A An, + A, :
= o fy= 20 D0 N log ——H | 15
B 5Nt e s log (15)



For P(a;|s;,1,a;, s;,0) we have:

(5(a2) if S; = 0,

P(ai|3iuI7af78§79) = { N( An; i 1 if ;=1

(16)
VS vVl P v

To perform this procedure on a wavelet pyramid, the inner product computations
necessary to compute b; can be performed efficiently by means of convolutions with
the mother wavelet functions ¢;(z,y). The Ay, s, and A, parameters may be
adapted to a specific image during the inference process by use of the update rules
described in the next section. This method was found to be particularly useful for
denoising, when the variance of the noise was assumed to be unknown.

4 Learning

Our objective for learning is to adjust the parameters, 6, to maximize the average
log-likelihood of images under the model:

0 = arg max (log P(1|6)) (17)

The parameters are updated by gradient ascent on this objective, which results in
the following update rules:

2 1+ ez% P(a,s|L0)
AN, 1 <sl- {L - af] > (19)
2 /\ai P(a,s|1,0)

AYiey) o v (e 9) * 0@, 9) pasiio) (20)

where x denotes cross correlation and e(x,y) is the reconstruction error computed
by e =1 — Wa. Only a center portion of the cross correlation with the extent of
the v;(z,y) functions is computed to update the parameters. The outer brackets
denotes averaging over many images. The notation () PO denotes averaging the

quantity in brackets while sampling from the specified distribution.

5 Results

The image model was trained on 22 512x512 pixel grayscale natural images (not
whitened). These images were generated from color images taken from a larger
database of photographic images . Smaller images (64x64 pixels) were selected
randomly for sampling during training. To simplify the learning procedure, sam-
pling was performed on a single spatial frequency scale. Each image was bandpass
filtered for an octave range before sampling from the posterior for that scale. The

Tmages were downloaded from philip.greenspun.com with permission from Philip
Greenspun.
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Figure 2: (a) Mother wavelet functions v;(z,y) adapted for 2, 4 and 6 bands and
corresponding power spectra showing power as a function of spatial frequency in
the 2D Fourier plane. (b) Equivalent mother wavelets and spectra for the 4-band
Steerable Pyramid.

Aa; and A4, parameters were constrained to be the same for all orientation bands and
were adapted over many images with Ay fixed. Shown in figure 2 are the learned
¥;(x,y) which parameterize W, with their corresponding 2D spectra. Three differ-
ent degrees of overcompleteness were tested. The results are shown for 2 band, 4
band and 6 band wavelet bases. As the degree of overcompleteness increases, the
resulting functions show tighter tuning to orientation. The basis filters for a 4 band
Steerable Pyramid [10] are also shown for comparison, to illustrate the similarity
to the learned functions.
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Figure 3: Sparsity comparison between the learned basis (top) and the steerable
basis (bottom). The y axis represents the signal-to-noise ratio (SNR) in dB achieved
for each method for a given percentage of nonzeros.

5.1 Sparsity

We evaluated the sparsity of the representations obtained with the four band learned
functions and the sampling method with those obtained using the same sampling
method and the four band Steerable Pyramid filters [10]. In order to explore the
SNR curves for each basis, we used a variety of values for A; so as to obtain different
levels of sparsity. The same images were used for both bases. The results are given
in figure 3. Each dot on the line represents a different value of A;. The results were
similar, with the learned basis yielding slightly higher SNR (about 0.5 dB) for the
same number of active coefficients.



5.2 Denoising

We evaluated our inference method and learned basis functions by denoising images
containing known amounts of additive i.i.d. Gaussian noise. Denoising was accom-
plished by averaging samples taken from the posterior distribution for each image
via Gibbs sampling to approximate the posterior mean. Gibbs sampling was per-
formed on a four level pyramid using the 6 band learned wavelet basis, and also
using the 6 band Steerable basis. The An, A5, and A,, parameters were adapted to
each noisy image during sampling for blind denoising in which the noise variance
was assumed to be unknown. We compared these results to the wiener2 function in
MATLAB, and also to BayesCore [9], a Bayesian method for computing an optimal
soft thresholding, or coring, function for a generalized Laplacian prior. For wiener2,
the best neighborhood size was used for each image. Table 1 gives the SNR results
for each method when applied to some standard test images for three different lev-
els of i.i.d. Gaussian noise with standard deviation o. Figure 4 shows a cropped
subregion of the results for the “Einstein” image with o = 10.

6 Summary and Conclusions

We have shown that a wavelet basis and a mixture prior composed of a Dirac delta
function and a Gaussian can be adapted to natural images resulting in very sparse
image representations. The resulting basis is very similar to a Steerable basis, both
in appearance and sparsity of the resulting image representations. It appears that
the Steerable basis may be nearly optimal for producing sparse representations of
natural scenes. Denoising results indicate that using a sparse prior and an inference
method to properly account for the non-orthogonality of the representation may
yield a significant improvement over wavelet coring methods that use filtered coeffi-
cients. More work needs to be done to determine whether the coding gains achieved
are due to the choice of prior versus the basis or inference/estimation method used.
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Image [ noise level [ noisy | wiener2 | BayesCore S6 [ D+G S6 | D+G L6
Einstein oc=10 12.40 15.80 16.36 16.47 16.19
o=20 6.40 12.61 13.44 13.80 13.79
o=30 2.89 10.95 11.81 12.28 12.29
Lena oc=10 13.61 19.05 19.91 20.37 20.21
o=20 7.59 15.51 16.88 17.46 17.54
o=30 4.07 13.25 14.99 15.48 15.55
Goldhill o=10 13.86 17.56 18.14 18.10 17.90
o=20 7.83 14.32 15.18 15.41 15.41
o =30 4.28 12.64 13.61 13.92 13.95
Fruit o=10 16.25 21.87 22.09 22.78 22.38
o=20 10.24 18.15 18.97 19.61 19.42
o =30 6.70 15.97 17.21 17.72 17.66

Table 1: SNR values (in dB) for noisy and denoised images contaminated with
additive i.i.d. Gaussian noise of std.dev. o. “D+4+G” means Delta-plus-Gaussian
prior, “S6” means 6-Band Steerable basis, and “L6” means 6-Band Learned basis.



original noisy (6=10) SNR=12.3983 wiener2 SNR=15.8033

BayesCore steer6 SNR=16.3591 D+G steer6 SNR=16.4714 D+G learned6 SNR=16.1939

Figure 4: Denoising example. A cropped subregion of the Einstein image and
denoised images for each noise reduction method for noise std.dev. o=10.
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