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Abstract 

Convergence for iterative reinforcement learning algorithms like 
TD(O) depends on the sampling strategy for the transitions. How­
ever, in practical applications it is convenient to take transition 
data from arbitrary sources without losing convergence. In this 
paper we investigate the problem of repeated synchronous updates 
based on a fixed set of transitions. Our main theorem yields suffi­
cient conditions of convergence for combinations of reinforcement 
learning algorithms and linear function approximation. This allows 
to analyse if a certain reinforcement learning algorithm and a cer­
tain function approximator are compatible. For the combination of 
the residual gradient algorithm with grid-based linear interpolation 
we show that there exists a universal constant learning rate such 
that the iteration converges independently of the concrete transi­
tion data. 

1 Introduction 

The strongest convergence guarantees for reinforcement learning (RL) algorithms 
are available for the tabular case, where temporal difference algorithms for both 
policy evaluation and the general control problem converge with probability one 
independently of the concrete sampling strategy as long as all states are sampled 
infinitely often and the learning rate is decreased appropriately [2]. In large, pos­
sibly continuous, state spaces a tabular representation and adaptation of the value 
function is not feasible with respect to time and memory considerations. Therefore, 
linear feature-based function approximation is often used. However, it has been 
shown that synchronous TD(O), i.e. dynamic programming, diverges for general lin­
ear function approximation [1]. Convergence with probability one for TD('\) with 
general linear function approximation has been proved in [12]. They establish the 
crucial condition of sampling states according to the steady-state distribution of 
the Markov chain in order to ensure convergence. This requirement is reasonable 
for the pure prediction task but may be disadvantageous for policy improvement 
as shown in [6] because it may lead to bad action choices in rarely visited parts 
of the state space. When transition data is taken from arbitrary sources a certain 
sampling distribution cannot be assured which may prevent convergence. 



An alternative to such iterative TD approaches are least-squares TD (LSTD) meth­
ods [4 , 3, 6, 8]. They eliminate the learning rate parameter and carry out a matrix 
inversion in order to compute the fixed point of the iteration directly. In [4] a least­
squares approach for TD(O) is presented which is generalised to TD(A) in [3]. Both 
approaches still sample the states according to the steady-state distribution. In 
[6, 8] arbitrary sampling distributions are used such that the transition data could 
be taken from any source. This may yield solutions that are not achievable by 
the corresponding iterative approach because this iteration diverges. All the LSTD 
approaches have the problem that the matrix to be inverted may be singular. This 
case can occur if the basis functions are not linearly independent or if the Markov 
chain is not recurrent. In order to apply the LSTD approach the problem would 
have to be preprocessed by sorting out the linear dependent basis functions and 
the transient states of the Markov chain. In practice one would like to save this 
additional work. 

Thus, the least-squares TD algorithm can fail due to matrix singularity and the 
iterative TD(O) algorithm can fail if the sampling distribution is different from the 
steady-state distribution. Hence, there are problems for which neither an iterative 
nor a least-squares TD solution exist. The actual reason for the failure of the 
iterative TD(O) approach lies in an incompatible combination of the RL algorithm 
and the function approximator. Thus, the idea is that either a change in the RL 
algorithm or a change in the approximator may yield a convergent iteration. Here, 
a change in the TD(O) algorithm is not meant to completely alter the character 
of the algorithm. We require that only modifications of the TD(O) algorithm be 
considered that are consistent according to the definition in the next section. 

In this paper we propose a unified framework for the analysis of a whole class of 
synchronous iterative RL algorithms combined with arbitrary linear function ap­
proximation. For the sparse iteration matrices that occur in RL such an iterative 
approach is superior to a method that uses matrix inversion as the LSTD approach 
does [5]. Our main theorem states sufficient conditions under which combinations 
of RL algorithms and linear function approximation converge. We hope that these 
conditions and the convergence analysis, that is based on the eigenvalues of the iter­
ation matrix, bring new insight in the interplay of RL and function approximation. 
For an arbitrary linear function approximator and for arbitrary fixed transition data 
the theorem allows to predict the existence of a constant learning rate such that 
the synchronous residual gradient algorithm [1] converges. Moreover, in combina­
tion with interpolating grid-based function approximators we are able to specify 
a formula for a constant learning rate such that the synchronous residual gradi­
ent algorithm converges independently of the transition data. This is very useful 
because otherwise the learning rate would have to be decreased which slows down 
convergence. 

2 A Framework for Synchronous Iterative RL Algorithms 

For a Markov decision process (MDP) with N states S = {S1' .. . ,SN}, action space 
A, state transition probabilities p : (S, S, A) -+ [0,1] and stochastic reward function 
r : (S, A) -+ R policy evaluation is concerned with solving the Bellman equation 

V 7r = 'YP7rV7r + R7r (1) 

for a fixed policy 7r : S -+ A. Vt denotes the value of state Si, Pi7j = P(Si ' Sj, 7r(Si)) , 
Ri = E{r(si,7r(Si))} and 'Y is the discount factor. As the policy 7r is fixed we will 
omit it in the following to make notation easier. 

If the state space S gets too large the exact solution of equation (1) becomes very 
costly with respect to both memory and computation time. Therefore, often linear 



feature-based function approximation is applied. The value function V is repre­
sented as a linear combination of basis functions {<PI, ... ,<P F } which can be written 
as V = <pw, where WE IRF is the parameter vector describing the linear combination 
and <P = (<PI I·· .I<p F) E IRNxF is the matrix with the basis functions as columns. 
The rows of <P are the feature vectors <P(Si) E IRF for the states Si. 

A popular algorithm for updating the parameter vector W after a single transition 
Xi ---+ Zi with reward ri is the TD(O)-algorithm [11] 

wn +l = wn + o:<p(xi)[ri + ,<p(zif wn - <p(xif wn ] = (IF + o:A;)wn + o:bi , (2) 

where 0: is the learning rate, Ai = <P(Xi)[,<P(Zi) - <P(Xi)Y, bi = <p(xi)ri and IF is 
the identity matrix in IRF. In the following we investigate the synchronous update 
for a fixed set of m transitions T = {(xi,zi,ri)li = 1, . . . ,m}. The start states 
Xi are sampled with respect to the probability distribution p, the next states Zi 
are sampled according to P(Xi,') and the rewards ri are sampled from r(xi). The 
synchronous update for the transition set T can then be written in matrix notation 
as 

(3) 

with ATD = Al + ... + Am and bTD = bl + ... + bm' Let X E IRmxN with Xi ,j = 1 
if Xi = Sj and 0 otherwise. Then, <p X = X<P E IRmxF is the matrix with feature 
vector <p(Xi) as its i-th row. Define Z and <p Z accordingly for the states Zi . With 
the vector of obtained rewards r = (rl ,'" ,rm)T we have ATD = (<pX)Th<pz - <p X) 
and bTD = (<px)Tr . 

The synchronous TD(O) algorithm is an instance of a much broader class of RL 
algorithms. The residual gradient algorithm [1], for example, minimises the Bell­
man error by gradient descent. In the following, let e = ,<pz - <px. The matrix 
fn D = fn XT X E IRNxN is diagonal and denotes the relative frequency of state Si 

as start state in the transition data T. Let 15 be the diagonal matrix with the 
inverse entries of D. For Di,i = 0 set 15i,i = O. The matrix of the relative fre­
quencies for the state transitions from Si to Sj is given by P = 15XT Z and the 
vector of the average reward in the different states Si is given by it = 15XT r. 
It can be shown that the weighted Bellman error for the synchronous update 

EB(W) = ~ [hP - IN)<pw + itr fnD [hP - IN)<pw + it] with the estimated en­

tities P, it and D instead of the unknown expected values P , Rand D is equivalent 
to the expression EB(W) = 2!n [ew + rf X15XT [ew + r]. Thus, for the residual 
gradient algorithm the update rule (3) becomes Wn+l = (IF + o:ARG )wn + o:bRG 
with ARG = -eTx15xTe and bRG = -eTx15XTr. The synchronous TD(O) 
and the residual gradient algorithm can be analysed in an unified framework with 
A = 'lTTe and b = 'lTTr. By setting 'lTTD = <p X and 'lTRG = -x15xTe , for example, 
one obtains the TD(O) algorithm and the residual gradient algorithm respectively. 
Moreover, varying 'IT yields a whole class of algorithms. We denote such algorithms 
as consistent RL algorithms if two conditions are fulfilled. First , for a tabular rep­
resentation the algorithm converges to an optimal solution w* with Bellman error 
zero. And second, if the algorithm converges with a linear function approximator 
it achieves the same Bellman error independently of the initial value wo. This class 
of RL algorithms includes the Kaczmarz rule [9], which is similar to the NTD(O) 
rule [4], or the uniform update rule described in [7]. In general, these algorithms 
yield different solutions when function approximation is used. For the TD(O) and 
the residual gradient algorithm this is shown in [10]. However, a general assessment 
of the solution quality of the different algorithms is still missing. 



3 Convergence Results 

The convergence properties of RL algorithms for synchronous updates in the general 
framework presented in the last section are described in the following main theorem 
of our paper. It generalises the case of repeated single-transition updates [7] to 
repeated multi-transition updates. For the following let [M] be the span of the 
columns of a matrix M and [M]l. the orthogonal complement of [M]. 

Theorem 1 Let wn+l = (IF + aA)wn + ab be the synchronous update rule for the 
transition data T. Let A E jRF x F be representable as A = C T D with some C, D E 

jRk x F and bE jRF be representable as b = CT v with some v E jRk. Let K = DCT E jRk x k 

and p( x) = ( _l)k (x - Al )fh ... (x - Al )f31 be the characteristic polynomial of Kover 
<C with IAII > ... > IAll. Also, let Ef, be the eigenspace corresponding to eigenvalue 

Ai and H = maxd ,J;(l:)I }. If the following assumptions hold 

(a) Vi: (Re(Ai) < 0) v Ai = 0 

(b) dim(Ef,) = (3i for Ai = 0 

(c) [CT] 11 [DT]l. = {O} 

then the limit w* = limn -> (1) wn exists for all learning rates 0 < a < aL, where the 
limit learning rate aL satisfies aL = if. The limit w* may depend on the initial 
value wO . Note, if the Ai leading to the maximum of H is real then H = I Ai I. 
A proof of this theorem can be found in the appendix. General convergence con­
ditions of iterations have been examined in numerical mathematics. A standard 
result states that if the absolute value of the largest eigenvalue of the iteration 
matrix IF + aA, i.e. the spectral radius , is smaller than one, then the iteration 
converges to the unique fixed point w* = -A-I b [5] (Theorem 2.1.1). In our case, 
however, the matrix A may not be invertible. This happens , for example, if the 
features <Pi in the feature matrix <P are linearly dependent. If A is not invertible it 
has eigenvalue zero and, thus, IF + aA has eigenvalue one. Conditions (b) and (c) 
in the above theorem are needed in order to compensate for the singularity of A 
and to assure convergence. If the iteration converges for singular A the fixed point 
depends on the initial value wO and is no longer unique. Therefore, for consistent 
RL algorithms we require that the Bellman error of all fixed points be the same. 
Thus, the quality of the obtained solution to the policy evaluation problem is in­
dependent of the initial value. However, the suitability of different w* for a policy 
improvement step can vary but this question is not addressed here. 

An important implication of Theorem 1 concerns the choice of the learning rate. 
If sampling were involved in the update rule the learning rate would have to be 
decreased in the standard manner (Lt at = 00, Lt a; < (0) in order to fulfil the 
condition for stochastic approximation algorithms. However, for a fixed set of up­
dates and certain synchronous RL algorithms with linear feature-based function 
approximation Theorem 1 predicts the existence of a constant learning rate. In 
general the computation of this learning rate would require knowledge of the eigen­
values of K which may not be directly available. As the following proposition shows, 
for certain combinations of RL algorithms and linear function approximation a uni­
versal constant learning rate exists such that the iteration in Theorem 1 converges. 
The proof can be found in the appendix. 

Proposition 1 For an appropriate constant choice of the learning rate a the resid­
ual gradient algorithm will converge independently of the linear function approxima­
tion scheme when applied to the problem of repeated synchronous multi-transition 



updates. The residual gradient algorithm is a consistent RL algorithm. If the resid­
ual gradient algorithm is combined with grid-based linear interpolation over an ar­
bitrary triangulation of the state space and the transition set contains m transitions 
then the iteration converges for all 0: < m(1~'Y2)' 

A choice of the learning rate 0: < k according to Theorem 1 yields a convergent 
iteration. However, this might not be the best choice with respect to asymptotic 
convergence rate. The asymptotic convergence rate is better for matrices with lower 
spectral radius [5], which yields a criterion for the choice of an optimal learning rate 
0:*. If K has only real eigenvalues then we can deduce a particular simple formula 
for 0:*. Assume that all nonzero eigenvalues of K satisfy Ai E [Amax, Amin], where 
Amin is the largest eigenvalue smaller than zero and Amax is the eigenvalue with 
largest absolute value. It can be shown that the asymptotic convergence rate is 
determined by the eigenvalues of 1m + o:K that are unequal one. The eigenvalues 
Ai of K are related to the eigenvalues ),i of 1m + o:K by ),i = 1 + o:Ai. Hence, the 
interval [Amax, Amin] is mapped to [),max, ),min] = [1 +O:Amax , 1 +o:Amin]. In order to 
obtain a low spectral radius of 1m +o:K this interval should lie symmetrically around 
zero, which is equivalent to ),min = -),max' This yields 0:* = 1 >'=in l ~ I >'=ax l < k with 
H = IAmaxl. Thus, 0:* leads to convergence according to Theorem 1. Note also that 
a larger learning rate does not necessarily lead to a faster asymptotic convergence 
of the iteration. 

4 Counterexample of Baird - Revisited 

In this section we analyse the counterexample given by Baird in [1], and show how 
Theorem 1 and Proposition 1 can be applied to obtain explicit bounds for the 
learning rate 0: and the discount factor "( for which the residual gradient and TD(O) 
algorithms converge. The matrices <I>, X and Z are given by 

12000000 1000000 
10200000 0100000 
10020000 0010000 

<I>= 10002000 X= 0001000 
10000200 0000100 
10000020 0000010 
20000001 0000001 

Z= 

0000001 
0000001 
0000001 
0000001 
0000001 
0000001 
0000001 

which corresponds to the synchronous update of every state transition. In 
the residual gradient case we have K RG -("(Z - X)<I>(("(Z - X)<I»T 
which has just negative eigenvalues URG {-4, H -15 + 34"( - 35"(2 ± 
-}2102,,(2 - 812"( - 2380"(3 + 121 + 1225"(4]}. Using Theorem 1 and Proposition 1 
we can find a constant learning rate 0:, such that the iteration converges for ev­
ery "( E [0,1). For example, for "( = 0.9 the eigenvalues of KRG are URG = 
{-0.0204,-4,-12.7296} and Theorem 1 yields 0: < 0.1571 which is also almost 
equal to the optimal learning rate 0:* ~ 0.1569. 

In the TD(O) case we have to analyse the matrix KTD = -("(Z -X)<I>(X<I»T, which 
has the eigenvalues UTD = {-4, H -15 + 17"( ± -}289"(2 - 406"( + 121]}. There are 
eigenvalues of KTD with positive real part for "( ~ 0.89. In such cases we have 
divergence for every 0: > 0 as described in [1] for,,( = 0.9. However, contradicting 
the argument in [1] the TD(O) algorithm converges for all "( :::; 0.88 if the learning 
rate is chosen appropriately. For example, for "( = 0.4 all eigenvalues are negative 
(UTD = {-3.0,-4,-5.2}), so condition (a) and (b) of Theorem 1 are trivially 
fulfilled. Condition (c) can also be shown by simple computation, and therefore 
using Theorem 1 we obtain convergence for 0: < 0.384 and optimal asymptotic 
convergence for 0:* ~ 0.244, which is much smaller. 



5 Conclusions 

For the problem of repeated synchronous updates based on a fixed set of transitions 
we have proved sufficient conditions of convergence for arbitrary combinations of 
reinforcement learning algorithms and linear function approximation. Our main 
theorem yields a rule for determining a problem dependent learning rate such that 
the algorithm converges. For a combination of the residual gradient algorithm with 
grid-based linear interpolation we have deduced a constant learning rate such that 
the algorithm converges independently of the concrete transition data. Moreover, 
we have derived a general formula for an optimal learning rate with respect to 
asymptotic convergence. Finally we have applied our main theorem to fully analyse 
the example Baird gives for the divergence of TD(O) [1]. 

Appendix 

Lemma 1 Let D be a real m x F matrix and CT a real F x m matrix, where 
m > F. Then K = DCT has the same eigenvalues as A = CT D and additionally 
the eigenvalue zero with multiplicity (F-m). Let HI{ be the generalised eigenspace 
of K corresponding to the eigenvalue A and H1 the generalised eigenspace of A 
corresponding to the eigenvalue A. Then, CTHI{ ~ H1 and DH1 ~ HI{. For 
A oF 0 it even holds that CTHI{ = H1 and DH1 = HI{. 

Proof: The generalised eigenspace HI{ has index sI{ if sI{ is the smallest number 
for which ker(K - AIm)sf = ker(K - AIm)sf +1 holds, where h denotes the identity 
in IRkxk. Let x E HI{, i.e. (K - AIm)sf x = O. With CT Ki = AiCT we have 

sf ( K) CT(K - AImyf x = CT(i~ St KiASf - i)x = (A - AIF)sf CT x . (4) 

Thus, CT x E H1. And with the same argument we obtain Dx E HI{ from x E 

H1· Therefore, CTHI{ ~ H1 and DH1 ~ HI{ Let A oF 0 and BI{ a basis in 
HI{. As the Jordan block of K corresponding to HI{ is invertible the vectors 
CT Bf are linearly independent and therefore form a basis of the span [CT BI{]. 
With the above consideration we have [CT BI{J ~ H 1. If this is a real subset 
CTBI{ can be completed to form a basis B1 of H1 with IBI{I < IB11. Then we 
have that DB1 is linearly independent and [DB1 J ~ HI{. Moreover, we have 
dim(HI{) = IBI{ I < IB11 = dim([DB1]) ~ dim(HI{), which is a contradiction. 
Therefore, CTHI{ = [CT BfJ = H1. Similarly, we obtain DH1 = HI{. Thus, the 
multiplicities of the eigenvalues A oF 0 of A and K are the same. The multiplicity 
of the eigenvalue zero of matrix K is by (F - m) larger than that of matrix A. D 

Proof of Theorem 1: Due to assumption (a) and Lemma 1 every eigenvalue of 
A is either zero or has a real part less than zero. If the real part of every eigenvalue 
of A is less than zero, A is invertible. For invertible matrices Theorem 2.1.1 from 
[5] states that the iteration converges if and only if the spectral radius e(IF + aA), 
i.e. the largest eigenvalue, is less than 1. For every eigenvalue Ai of A obviously 

1 + aAi is an eigenvalue of IF + aA. With H = maxi { , ~;(l:) , } we obtain for a> 0 

. 2 
e(IF + aA) < 1 ~ 'it: 11 + aAi l < 1 ~ a < H' (5) 

This completes the proof if all eigenvalues of A have a negative real part. 

In the following let A have the eigenvalue Al = O. The vector space IRF can be 
represented as the direct sum of the generalised eigenspaces IRF = H~ EB H12 EB 



· .. EB Htl • In the following we write ilt = Ht2 EB ... EB Htl because this is a 
complementary space of Ht. As the generalised eigenspaces of A are invariant 
against A, i.e. \::Ix E Ht. : Ax E Ht., the iteration wn+1 = (IF + aA)wn + ab can 
be decomposed in two parts, one in the generalised eigenspace Ht and the other in 
the com.Qlem~ntary space ilt. Let wn = wn + wn and b = b + b, where wn, b E Ht 
and wn , b E Ht. Then we have 

wn+1 = wn + a(Awn + b) = ~n + a(Awn + b~ +~n + a(Awn + b~ (6) 

Thus, the convergence analysis can be carried out separately for the two iterations. 
The matrix A in iteration wn+1 = wn + a(Awn + b) is not invertible. However, the 
iteration takes place in the subspace ilt. In this subspace the mapping associated 
with A is invertible. Therefore, A can be replaced by an invertible matrix A that 
does not ~lter the iteration in ilt. The matrix A can be constructed such that 
e(IF + aA) = e(IF + aA). Therefore, according to the considerations above the 
iteration converges for 0 < a < it. 
In the following we show that the iteration in Ht is the identity and therefore 
trivially converges. According to assumption J~ Hff = E{f. All v E IRm can be 
represented as v = ii + v with ii E E{f and v E Ho = H~ EB · .. EB Ht. According to 

Lemma 1 CTilff = ilt and CTHff ~ Ht hold. Therefore, for b + b = b = CT v we 
have b = CT ii and b = CT v. Let E{f =1= {o}. Then, for all ii E E{f 

0= Kii = DCTii ===* CTii E [CT] n [DT].L 1% cTii = O. 

For E{f = {O} we also obtain CTii = 0 because ii = o. Therefore, we have 
CTE{f = {O} and, as a consequence, b = CTii = o. The last that remains to show 
is that Aw = 0 for all w E HA. According to Lemma 1 we know that Dw E Hff. 
Assumption (b) says that H~ = E{f and from the above considerations we know 
that CTE{f = {O}. Therefore, Aw = CT(Dw) = o. Thus, the iteration in Ht is the 
identity. As both parts of the iteration converge the overall iteration also converges 
which completes that part of the proof. 

The limit w* of wn+1 = wn + a(Awn + b) is unique and we have w* = A-lb. The 
limit of wn+l = wn + a(Awn + b) is not unique, but depends on the initial value 
wo. It holds that w* = wo. Therefore, the limit w* = w* + w* depends on the 
initial value wo. 

Proof of Proposition 1: For the residual gradient algorithm we have ARG = 
_8T X DXT8 and bRG = _8T X DXT r . In order to apply Theorem 1 this is 

decomposed in ARG = CTD and bRG = CTv with C = -D = v75XT8 and 

v = -v75XT r. As the diagonal entries of D are positive we can write v75 for the 
diagonal matrix whose entries are the square roots of D. Thus [CT] = )DT] which 
yields condition (c) of Theorem 1. Moreover, the matrix K = DC = -CCT 
is symmetric and therefore diagonalisable. Hence, condition (b) is fulfilled and 
all eigenvalues are real. Let now A =1= 0 be an eigenvalue of K and let x be a 
corresponding eigenvector. Then 0 > - (CT x) T (CT x) = xT K x = AXT x which 
yields A < o. Thus, all requirements are fulfilled and for an appropriate choice of 
a the residual gradient algorithm converges independently of the concrete form of 
the function approximation scheme. 

The consistency of the residual gradient algorithm can be shown formally but due to 
space limitations we only give the following informal proof. The algorithm minimises 



the Bellman error, which is a quadratic objective function. Hence, there are no local 
optima and if the global optimum is not unique, the values of all global optima are 
identical. Due to its gradient descent property the residual gradient algorithm 
converges to such a global optimum independently of the initial value. In case of a 
tabular representation a global minimum has Bellman error zero and corresponds 
to an optimal solution. Thus, the residual gradient algorithm is consistent. 

A detailed description of how grid-based linear interpolation works in combination 
with RL can be found in [7]. Important for us is that in a d-dimensional grid each 
feature vector ip(x) satisfies 0 ~ ipi(X) ~ land 2:::1 ipi(X) = 1. With (, -> denoting 
the standard scalar product and II . 112 denoting the corresponding euclidean norm, 

we have !Ki,jl = 1«CT)i, (CT)j )1 ~ maxdll(CT)IIID = 2::=1 Cl~j" According to 

the definition Cl,j = (-JD)I,1 2:~1 Xk,ICripj(Zk) - ipj(Xk)) holds. Moreover, from 

D = X T X it follows that Dl ,l = 2:;;'=1 X~,l = 2:;;'=1 Xk ,l because Xk ,l is either zero 

or one. And besides that we have nl,IDI ,1 = 1. Altogether we obtain 

IK',il ,,;~' (15", ,~, X", it, <Pi (Z.)) '+ (15", ,~, X", it, <Pi (X,l) Z ~ ~z + 1. 

It is well known that the spectral radius {! of the matrix K satisfies (!(K) ~ IIKII 
for every norm II . II . Then, for the maximum norm of K we obtain I!K II 00 = 
max1 ";i";m 2:1=1 IKi,jl ~ m(l + ,2) . With H = m(l + ,2) this yields {!(K) ~ 
IIKll oo ~ H. Thus we have a bound for the absolute value of the largest eigenvalue 
of K. According to Theorem 1 the iteration converges for a < ft· D 
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