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Abstract

We present a framework for sparse Gaussian process (GP) methods
which uses forward selection with criteria based on information-
theoretic principles, previously suggested for active learning. Our
goal is not only to learn d-sparse predictors (which can be evalu-
ated in O(d) rather than O(n), d < n, n the number of training
points), but also to perform training under strong restrictions on
time and memory requirements. The scaling of our method is at
most O(n - d?), and in large real-world classification experiments
we show that it can match prediction performance of the popular
support vector machine (SVM), yet can be significantly faster in
training. In contrast to the SVM, our approximation produces esti-
mates of predictive probabilities (‘error bars’), allows for Bayesian
model selection and is less complex in implementation.

1 Introduction

Gaussian process (GP) models are powerful non-parametric tools for approximate
Bayesian inference and learning. In comparison with other popular nonlinear ar-
chitectures, such as multi-layer perceptrons, their behavior is conceptually simpler
to understand and model fitting can be achieved without resorting to non-convex
optimization routines. However, their training time scaling of O(n3) and memory
scaling of O(n?), where n the number of training points, has hindered their more
widespread use. The related, yet non-probabilistic, support vector machine (SVM)
classifier often renders results that are comparable to GP classifiers w.r.t. prediction
error at a fraction of the training cost. This is possible because many tasks can
be solved satisfactorily using sparse representations of the data set. The SVM is
triggered towards finding such representations through the use of a particular loss
function' that encourages some degree of sparsity, i.e. the final predictor depends
only on a fraction of training points crucial for good discrimination on the task.
Here, we call these utilized points the active set of the sparse predictor. In case of
SVM classification, the active set contains the support vectors, the points closest to

'!An SVM classifier is trained by minimizing a regularized loss functional, a process
which cannot be interpreted as approximation to Bayesian inference.



the decision boundary and the misclassified ones. If the active set size d is much
smaller than n, an SVM classifier can be trained in average case running time be-
tween O(n - d?) and O(n? - d) with memory requirements significantly less than n?.
Note, however, that without any restrictions on the data distribution, d can rise to
n.

In an effort to overcome scaling problems a range of sparse GP approximations have
been proposed [1, 8, 9, 10, 11]. However, none of these has fully achieved the goals of
being a nontrivial approximation to a non-sparse GP model and matching the SVM
w.r.t. both prediction performance and run time. The algorithm proposed here ac-
complishes these objectives and, as our experiments show, can even be significantly
faster in training than the SVM. Furthermore, time and memory requirements may
be restricted a priori. The potential benefits of retaining the probabilistic charac-
teristics of the method are numerous, since hard problems, e.g. feature and model
selection, can be dealt with using standard techniques from Bayesian learning.

Our approach builds on earlier work of Lawrence and Herbrich [2] which we extend
here by considering randomized greedy selections and focusing on an alternative
representation of the GP model which facilitates generalizations to settings such
as regression and multi-class classification. In the next section we introduce the
GP classification model and a method for approximate inference. Section 3 then
contains the derivation of our fast greedy approximation and a description of the as-
sociated algorithm. In Section 4, we present large-scale experiments on the MNIST
database, comparing our method directly against the SVM. Finally we close with a
discussion in Section 5.

We denote vectors g = (g;); and matrices G = (g;;)i; in bold-face?. If I,J
are sets of row and column indices respectively, we denote the corresponding sub-
matrix of G € RP? by Gy j, furthermore we abbreviate G,. to Gr1..4, Gr,; to
GL{j}’ G to G711, etc. The density of the Gaussian distribution with mean g and
covariance matrix X is denoted by N (-|u, ). Finally, we use diag(-) to represent an
‘overloaded’ operator which extracts the diagonal elements of a matrix as a vector
or produces a square matrix with diagonal elements from a given vector, all other
elements 0.

2 Gaussian Process Classification

Assume we are given a sample S := ((x1,41),. .., (Tn,yn)), &, € X, y; € {—1,+1},
drawn independently and identically distributed (i.i.d.) from an unknown data dis-
tribution® P(z,y). Our goal is to estimate P(y|x) for typical « or, less ambitiously,
to learn a predictor & — y with small error on future data. To model this situation,
we introduce a latent variable u € R separating & and y, and some classification
noise model P(y|u) := ®(y-(u+b)), where ® is the cumulative distribution function
of the standard Gaussian N (0, 1), and b € R is a bias parameter. From the Bayesian
viewpoint, the relationship @ — u is a random process u(-), which, in a Gaussian
process (GP) model, is given a GP prior with mean function 0 and covariance kernel
k(-,-). This prior encodes the belief that (before observing any data) for any finite
set X = {@&,...,&,} C &, the corresponding latent outputs (u(Z;),... ,u(a?:p))T

are jointly Gaussian with mean 0 € R? and covariance matrix (k(Z;,Z;)):,; € RPP.

GP models are non-parametric, that is, there is in general no finite-dimensional

Whenever we use a bold symbol g or G for a vector or matrix, we denote its compo-
nents by the corresponding normal symbols g; and g;,;.

$We focus on binary classification, but our framework can be applied straightforwardly
to regression estimation and multi-class classification.



parametric representation for w(-). It is possible to write u(:) as linear function
in some feature space F associated with k, i.e. u(xz) = wr¢(z), w € F, in the
sense that a Gaussian prior on w induces a GP distribution on the linear function
u(-). Here, ¢ is a feature map from X into F, and the covariance function can be
written k(z,z') = ¢(x)T¢(2’). This linear function view, under which predictors
become separating hyper-planes in F, is frequently used in the SVM community.
However, F is, in general, infinite-dimensional and not uniquely determined by
the kernel function k. We denote the sequence of latent outputs at the training
points by u := (u(x1),...,u(x,))T € R" and the covariance or kernel matrix by
K = (k(mi,a:j))iﬁj € R™™,

The Bayesian posterior process for u(-) can be computed in principle using Bayes’
formula. However, if the noise model P(y|u) is non-Gaussian (as is the case for
binary classification), it cannot be handled tractably and is usually approximated
by another Gaussian process, which should ideally preserve mean and covariance
function of the former. It is easy to show that this is equivalent to fitting the mo-
ments between the finite-dimensional (marginal) posterior P(u|S) over the train-
ing points and a Gaussian approximation Q(u), because the conditional posterior
P(u(z,)|u,S) for some non-training point . is identical to the conditional prior
P(u(xs)|u). In general, computing @ is also infeasible, but several authors have
proposed to approximate the global moment matching by iterative schemes which
locally focus on one training pattern at a time [1, 4]. These schemes (at least in
their simplest forms) result in a parametric form for the approximating Gaussian

Q(u) x P(u) f[exp (—%(ul - mi)Q) . (1)

This may be compared with the form of the true posterior P(u|S)
P(u) T, P(yilu;) and shows that Q(u) is obtained from P(u|S) by a likelihood
approzimation. Borrowing from graphical models vocabulary, the factors in (1) are
called sites. Initially, all p;, m; are 0, thus Q(w) = P(u). In order to update the
parameters for a site i, we replace it in Q(w) by the corresponding true likelihood
factor P(y;|u;), resulting in a non-Gaussian distribution whose mean and covari-
ance matrix can still be computed. This allows us to approximate it by a Gaussian
Q"% (u) using moment matching. The site update is called the inclusion of i into
the active set I. The factorized form of the likelihood implies that the new and old
Q differ only in the parameters p;, m; of site ¢. This is a useful locality property of
the scheme which is referred to as assumed density filtering (ADF) (e.g. [4]). The
special case of ADF* for GP models has been proposed in [5].

3 Sparse Gaussian Process Classification

The simplest way to obtain a sparse Gaussian process classification (GPC) approx-
imation from the ADF scheme is to leave most of the site parameters at 0, i.e.
pi =0, m; =0foralli &I, where I C {1,...,n} is the active set, |I| =: d < n. For
this to succeed, it is important to choose I so that the decision boundary between
classes is represented essentially as accurately as if we used the whole training set.
An exhaustive search over all possible subsets [ is, of course, intractable. Here, we
follow a greedy approach suggested in [2], including new patterns one at a time into
I. The selection of a pattern to include is made by computing a score function for

1A generalization of ADF, expectation propagation (EP) [4], allows for several iterations
over the data. In the context of sparse approximations, it allows us to remove points from
I or exchange them against such outside I, although we do not consider such moves here.



Algorithm 1 Informative vector machine algorithm

Require: A desired sparsity d < n.
I =0, m =0, II = diag(0), diag(A) = diag(K), h =0, J ={1,...,n}.
repeat
for j € J do
Compute A; according to (4).
end for
i =argmax;c; A;
Do updates for p; and m; according to (2).
Update matrices L, M, diag(A) and h according to (3).
I—TU{i}, J—J\{i}.
until [I| =d

all points in J = {1,...,n} \ I (or a subset thereof) and then picking the winner.
The heuristic we implement has also been considered in the context of active learn-
ing (see chapter 5 of [3]): score an example (x;,y;) by the decrease in entropy of
Q(-) upon its inclusion. As a result of the locality property of ADF and the fact
that @ is Gaussian, it is easy to see that the entropy difference H[Q™™] — H[Q)] is
proportional to the log ratio between the variances of the marginals Q™% (u;) and
Q(u;). Thus, our heuristic (referred to as the differential entropy score) favors points
whose inclusion leads to a large reduction in predictive (posterior) variance at the
corresponding site. Whilst other selection heuristics can be argued for and utilized,
it turns out that the differential entropy score together with the simple likelihood
approximation in (1) leads to an extremely efficient and competitive algorithm.

In the remainder of this section, we describe our method and give a schematic
algorithm. A detailed derivation and discussions of some extensions can be found
in [7]. From (1) we have Q(-) = N(:|h, A), A := (K~' + )~ h := AlIm and
IT := diag(p). If I is the current active set, then all components of p and m not in
I are zero, and some algebra using the Woodbury formula gives

A=K-M"M, M=L"I}’K,. cR%",
where L is the lower-triangular Cholesky factor of
B =I1+11°K,;I}/? e R

In order to compute the differential entropy score for a point j &€ I, we have to
know a; ; and hj;. Thus, when including ¢ into the active set I, we need to update
diag(A) and h accordingly, which in turn requires the matrices L and M to be
kept up-to-date. The update equations for p;, m; are

pi:L, mi:hi+%, where
1-— ai,iyi V;
yi - (hi +b) yi - N(z0,1) ( hi+b ) 2)
=T, Q= ————, Vi=0Q;| 0+ .
1+a;; (I)(Zi)q/l +a;; 1+a;;

We then update L — L™ by appending the row (I¥,1) and M — M™™ by
appending the row u™, where

l=pM.;, Il=\14+pK.;—1"l, p=1""(/mK.,—M"1). (3)

Finally, diag(A"®") « diag(A) — (M?)j and A" «— h—i—ailp;l/Qu. The differential
entropy score for j ¢ I can be computed based on the variables in (2) (with i — j)
as

1
A]‘ = 5 IOg(l — aj,jyj); (4)



which can be computed in O(1), given h; and a;;. In Algorithm 1 we give an
algorithmic version of this scheme.

Each inclusion costs O(n - d), dominated by the computation of w, apart from the
computation of the kernel matrix column K. ;. Thus the total time complexity is
O(n-d?). The storage requirement is O(n-d), dominated by the buffer for M. Given
diag(A) and h, the error or the expected log likelihood of the current predictor on
the remaining points J can be computed in O(n). These scores can be used in order
to decide how many points to include into the final I. For kernel functions with
constant diagonal, our selection heuristic is constant over patterns if I = (), so the
first (or the first few) inclusion candidate is chosen at random. After training is
complete, we can predict on test points ¢, by evaluating the approximate predictive
distribution Q(u«|z.,S) = [ P(u.|u)Q(u)du = N (u|u(z.),0?(x.)), where

plx.) =B k(z.), (@) = k(z., z.) — k(z.) "I/ * B *k(z.),  (5)

with 3 := H}/QB_ll'I}/QmI and k(z.) := (k(z;,x«))icr. We may compute o2 (z.)
using one back-substitution with the factor L. The approximate predictive distri-
bution over y. can be obtained by averaging the noise model over the Gaussian.
The optimal predictor for the approximation is sgn(u(x.)+b), which is independent
of the variance o?(z.).

The simple scheme above employs full greedy selection over all remaining points to
find the inclusion candidate. This is sensible during early inclusions, but computa-
tionally wasteful during later ones, and an important extension of the basic scheme
of [2] allows for randomized greedy selections. To this end, we maintain a selection
index J C {1,...,n} with J NI = () at all times. Having included ¢ into I we
modify the selection index J. This means that only the components J of diag(A)
and h have to be updated, which requires only the columns M. ;. Hence, if J
exhibits some inertia while moving over {1,...,n} \ I, many of the columns of M
will not have to be kept up-to-date. In our implementation, we employ a simple
delayed updating scheme for the columns of M which avoids double computations
(see [7] for details). After a number of initial inclusions are done using full greedy
selection, we use a J of fixed size m together with the following modification rule:
for a fraction 7 € (0,1), retain the 7 - m best-scoring points in J, then fill it up to
size m by drawing at random from {1,...,n}\ (I UJ).

4 Experiments

We now present results of experiments on the MNIST handwritten digits database®,
comparing our method against the SVM algorithm. We considered binary tasks of
the form ‘c-against-rest’, ¢ € {0,...,9}. ¢ is mapped to +1, all others to —1. We
down-sampled the bitmaps to size 13 x 13 and split the MNIST training set into
a (new) training set of size n = 59000 and a validation set of size 1000; the test
set size is 10000. A run consisted of model selection, training and testing, and
all results are averaged over 10 runs. We employed the RBF kernel k(x,x’) =
Cexp(—(v/(2-169)) |z — z'||?), = € R with hyper-parameters C' > 0 (process
variance) and v > 0 (inverse squared length-scale). Model selection was done by
minimizing validation set error, training on random training set subsets of size

5000.°

% Available online at http://www.research. att.com/~yann/exdb/mnist /index.html.
5The model selection training set for a run i is the same across tested methods. The
list of kernel parameters considered for selection has the same size across methods.



| SVM | VM |

| d gen  time |
1130 0.18 627
820 0.26 427
2150 0.40 1690
2500 0.39 2191
1740 0.33 1210
2200 0.32 1758
1270 0.29 765
1660 0.51 1110
2470 0.3 2024
2740 0.55 2444

d gen  time
1247 0.22 1281
798 0.20 864
2240 0.40 2977
2610 0.41 3687
1826 0.40 2442
2306 0.29 2771
1331 0.28 1520
1759 0.54 2251
2636 0.50 3909
2731 0.58 3469
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Table 1: Test error rates (gen, %) and training times (time, s) on binary MNIST
tasks. SVM: Support vector machine (SMO); d: average number of SVs. IVM:
Sparse GPC, randomized greedy selections; d: final active set size. Figures are
means over 10 runs.

Our goal was to compare the methods not only w.r.t. performance, but also running
time. For the SVM, we chose the SMO algorithm [6] together with a fast elaborate
kernel matrix cache (see [7] for details). For the IVM, we employed randomized
greedy selections with fairly conservative settings.” Since each binary digit classifi-
cation task is very unbalanced, the bias parameter b in the GPC model was chosen
to be non-zero. We simply fixed b = ®~1(r), where r is the ratio between +1 and
—1 patterns in the training set, and added a constant v, = 1/10 to the kernel k
to account for the variance of the bias hyper-parameter. Ideally, both b and v
should be chosen by model selection, but initial experiments with different values
for (b, vp) exhibited no significant fluctuations in validation errors. To ensure a fair
comparison, we did initial SVM runs and initialized the active set size d with the
average number (over 10 runs) of SVs found, independently for each ¢. We then
re-ran the SVM experiments, allowing for O(dn) cache space. Table 1 shows the
results.

Note that IVM shows comparable performance to the SVM, while achieving sig-
nificantly lower training times. For less conservative settings of the randomized
selection parameters, further speed-ups might be realizable. We also registered
(not shown here) significant fluctuations in training time for the SVM runs, while
this figure is stable and a-priori predictable for the IVM. Within the IVM, we can
obtain estimates of predictive probabilities for test points, quantifying prediction
uncertainties. In Figure 1, which was produced for the hardest task ¢ = 9, we reject
fractions of test set examples based on the size of | P(y. = +1) —1/2|. For the SVM,
the size of the discriminant output is often used to quantify predictive uncertainty
heuristically. For ¢ = 9, the latter is clearly inferior (although the difference is less
pronounced for the simpler binary tasks).

In the SVM community it is common to combine the ‘c-against-rest’ classifiers to
obtain a multi-class discriminant® as follows: for a test point x.., decide for the class
whose associated classifier has the highest real-valued output. For the IVM, the

"First 2 selections at random, then 198 using full greedy, after that a selection index of
size 500 and a retained fraction 7 = 1/2.

8 Although much recent work has looked into more powerful combination schemes, e.g.
based on error-correcting codes.
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Figure 1: Plot of test error rate against increasing rejection rate for the SVM
(dashed) and TVM (solid), for the task ¢ = 9 against the rest. For SVM, we reject
based on “distance” from separating plane, for IVM based on estimates of predictive
probabilities. The IVM line runs below the SVM line exhibiting lower classification
errors for identical rejection rates.

equivalent would be to compare the estimates log P(y. = +1) from each c-predictor
and pick the maximizing c¢. This is suboptimal, because the different predictors
have not been trained jointly.” However, the estimates of log P(y. = +1) do depend
on predictive variances, i.e. a measure of uncertainty about the predictive mean,
which cannot be properly obtained within the SVM framework. This combination
scheme results in test errors of 1.54%(£0.0417%) for IVM, 1.62%(%0.0316%) for
SVM. When comparing these results to others in the literature, recall that our
experiments were based on images sub-sampled to size 13 x 13 rather than the
usual 28 x 28.

5 Discussion

We have demonstrated that sparse Gaussian process classifiers can be constructed
efficiently using greedy selection with a simple fast selection criterion. Although we
focused on the change in differential entropy in our experiments here, the simple
likelihood approximation at the basis of our method allows for other equally efficient
criteria such as information gain [3]. Our method retains many of the benefits
of probabilistic GP models (error bars, model combination, interpretability, etc.)
while being much faster and more memory-efficient both in training and prediction.
In comparison with non-probabilistic SVM classification, our method enjoys the
further advantages of being simpler to implement and having strictly predictable
time requirements. Our method can also be significantly faster'® than SVM with the
SMO algorithm. This is due to the fact that SMO’s active set typically fluctuates
heavily across the training set, thus a large fraction of the full kernel matrix must
be evaluated. In contrast, IVM requires only d/n of K.

It is straightforward to obtain the IVM for a joint GP classification model, however
the training costs raise by a factor of ¢2. Whether this factor can be reduced to ¢ using
further sensible approximations, is an open question.

1OWe would expect SVMs to catch up with IVMs on tasks which require fairly large
active sets, and for which very simple and fast covariance functions are appropriate (e.g.
sparse input patterns).



Among the many proposed sparse GP approximations [1, 8, 9, 10, 11], our method
is most closely related to [1]. The latter is a sparse Bayesian online scheme which
does not employ greedy selections and uses a more accurate likelihood approxima-
tion than we do, at the expense of slightly worse training time scaling, especially
when compared with our randomized version. It also requires the specification of a
rejection threshold and is dependent on the ordering in which the training points
are presented. It incorporates steps to remove points from I, which can also be
done straightforwardly in our scheme, however such moves are likely to create nu-
merical stability problems. Smola and Bartlett [8] use a likelihood approximation
different from both the IVM and the scheme of [1] for GP regression, together with
greedy selections, but in contrast to our work they use a very expensive selection
heuristic (O(n - d) per score computation) and are forced to use randomized greedy
selection over small selection indexes. The differential entropy score has previously
been suggested in the context of active learning (e.g. [3]), but applies more directly
to our problem. In active learning, the label y; is not known at the time x; has to
be scored, and expected rather than actual entropy changes have to be considered.
Furthermore, MacKay [3] applies the selection to multi-layer perceptron (MLP)
models for which Gaussian posterior approximations over the weights can be very
poor.
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