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Abstract 

In Slow Feature Analysis (SFA [1]), it has been demonstrated that 
high-order invariant properties can be extracted by projecting in­
puts into a nonlinear space and computing the slowest changing 
features in this space; this has been proposed as a simple general 
model for learning nonlinear invariances in the visual system. How­
ever, this method is highly constrained by the curse of dimension­
ality which limits it to simple theoretical simulations. This paper 
demonstrates that by using a different but closely-related objective 
function for extracting slowly varying features ([2, 3]), and then ex­
ploiting the kernel trick, this curse can be avoided. Using this new 
method we show that both the complex cell properties of transla­
tion invariance and disparity coding can be learnt simultaneously 
from natural images when complex cells are driven by simple cells 
also learnt from the image. 

The notion of maximising an objective function based upon the temporal pre­
dictability of output has been progressively applied in modelling the development 
of invariances in the visual system. F6ldiak used it indirectly via a Hebbian trace 
rule for modelling the development of translation invariance in complex cells [4] 
(closely related to many other models [5,6,7]); this rule has been used to maximise 
invariance as one component of a hierarchical system for object and face recognition 
[8]. On the other hand, similar functions have been maximised directly in networks 
for extracting linear [2] and nonlinear [9, 1] visual invariances. Direct maximisation 
of such functions have recently been used to model complex cells [10] and as an 
alternative to maximising sparseness/independence in modelling simple cells [11]. 

Slow Feature Analysis [1] combines many of the best properties of these methods to 
provide a good general nonlinear model. That is, it uses an objective function that 
minimises the first-order temporal derivative of the outputs; it provides a closed­
form solution which maximises this function by projecting inputs into a nonlinear 
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space; it exploits sphering (or PCA-whitening) of the data to ensure that all outputs 
have unit variance and are uncorrelated. However, the method suffers from the curse 
of dimensionality in that the nonlinear feature space soon becomes very large as the 
input dimension grows, and yet this feature space must be represented explicitly in 
order for the essential sphering to occur. 

The alternative that we propose here is to use the objective function of Stone [2, 9], 
that maximises output variance over a long period whilst minimising variance over a 
shorter period; in the linear case, this can be implemented by a biologically plausible 
mixture of Hebbian and anti-Hebbian learning on the same synapses [2]. In recent 
work, Stone has proposed a closed-form solution for maximising this function in 
the linear domain of blind source separation that does not involve data-sphering. 
This paper describes how this method can be kernelised. The use of the "kernel 
trick" allows projection of inputs into a nonlinear kernel induced feature space 
of very high (possibly infinite) dimension which is never explicitly represented or 
accessed. This leads to an efficient method that maps to an architecture that could 
be biologically implemented either by Sigma-Pi neurons, or fixed REF networks (as 
described for SFA [1]). We demonstrate that using this method to extract features 
that vary slowly in natural images leads to the development of both the complex-cell 
properties of translation invariance and disparity coding simultaneously. 

1 Finding Slow Features with kernels 

Given I time-series vectors X i<l where each n-dimensional vector Xi is a linear 
mixture of n unknown but temporally predictable parameters at time i, the problem 
in [3] is to find an n-dimensional weight vector w so that the output Yi = w T Xi at 
each i is a scaled version of a particular parameter. Many quasi-invariant parameters 
underlying perceptual data exhibit these properties of short-term predictability and 
long-term variability. Accordingly, an objective function F can be defined as the 
ratio between the long-term variance V and the short-term variance S of the output 
sequence i.e. 

F _ V _ L.i Yi 2 
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where Yii and 'iIi represent the output at i centered using long- and short-term means. 
The aim is to find the parameters that maximize F, which can be rewritten as: 
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where C and Care nxn covariance matrices estimated from the I inputs. F is a 
version of the Rayleigh quotient and the problem to be solved is, in analogy to 
PCA, the right-handed generalized symmetric eigenproblem: 

Cw=).Cw (2) 



where A is the largest eigenvalue and W the corresponding eigenvector. In this case, 
the component extracted y = w T x corresponds to the most predictable component 
with F = A. Most importantly, more than one component can be extracted by 
considering successive eigenvalues and eigenvectors which are orthogonal in the 
metrics C and 0, i.e. WfCWj = 0 and wfCwj = 0 for i -::/:- j. 

To make this algorithm nonlinear we can first project the data x into some high­
dimensional feature space via a nonlinear mapping ¢, and then find the weight 
vector W that maximizes F in this space. In this case, to optimise Eq. (2) the 
covariance matrices must be estimated in the feature space as 

where ¢(Xi) and ¢(Xi) represent the data centered in the feature space. The problem 
with this straight-forward approach is that the dimensionality of the feature space 
quickly becomes huge as the input dimension increases [1]. To prevent this we use 
the kernel trick: to avoid working with the mapped data directly, we assume that 
the solution W can be written as an expansion in terms of mapped training data: 
W = 2:~= 1 ai¢(xi). We can now rewrite the numerator (likewise denominator) in 
Fas 

where a = (al··· adT and K is a (lxl) matrix with entries defined as Kij 
¢(Xi)T ¢(Xj). F can now be written as: 

F= aTj(j(Ta 

aTK KTa 
(3) 

To avoid explicitly computing dot products in the feature space, we introduce kernel 
functions defined as k(x, y) = ¢(x)T ¢(y) , which means we just have to evaluate 
kernels in the input space. Any kernel involved in Support Vector Machines can be 
used, e.g. linear, polynomial, RBF or sigmoid. By now defining the kernel matrix 
K with entries 

(4) 

we can arrive at the corresponding eigenproblem: 



(5) 

where A is again the corresponding largest eigenvalue equal to F. As for the linear 
case, more than one source can be extracted by considering successive eigenvalues 
and eigenvectors. In order to recover a temporal component, we need only to 
compute the nonlinear projection y = w T ¢>(x) of a new input x onto w which is 

equivalent to y = 2:!=l Qik(Xi'X). 

Finding a sparse solution 

If the eigen problem is solved on the entire training set then this algorithm also 
suffers from the curse of dimensionality, since the matrices (lxl) easily become com­
putationally intractable. A sparse solution using a small subset p of the training 
data in the expansion is therefore essential: this is called the basis set BS. The out­
put is now y = 2:iEBS Qik(Xi' x), and the solution must lie in the subspace spanned 
by BS. The kernel elements Kij are computed between the p basis vectors X i and the 

1 training data Xj. Thus, K, K and :K are rectangular pxl but the covariance ma-
--T - -

trices (K K ) and (K KT) used in the eigenproblem are only pxp. This approach 
can effectively solve very large problems, provided p < < l. The question of course 
is how to choose the basis vectors: it is both necessary and sufficient that they span 
the space of the solution in the kernel induced feature space. In a recent version 
of the algorithm [12] we use the sparse greedy method of [13] as a preprocessing 
step. This efficiently finds a small basis set that minimises the least-squares error 
between data points in feature space and those reconstructed in the feature space 
defined by the basis set. In the simulations below we used a less efficient greedy 
algorithm that performed equally well here, but requires a considerably larger basis 
setl. 

The complete online algorithm requires minimal memory, making it ideal for very 
large data sets. The implementation estimates the long- and short-term kernel 
means online using exponential time averages parameterised using half-lives As, At 
(as in [9]). Likewise, the covariance matrices KKT , i(i(T are updated online at 

--T --T -T 
each time step e.g. KK is updated to KK + KK where K is the column vector 
of kernel values centred using the long term mean and computed for the current 
time step; there is therefore no need to explicitly compute or store kernel matrices. 

2 Simulation Results 

The simulation was performed using a grey-level stereo pair of resolution 128x128, 
shown in Figure 1 [a]. A new 2D direction 0° < e :::; 360° was selected at every 64 
time steps, and the image was translated by one pixel per time step in this direction 
(with toroidal wrap-around). 

A set of 20 monocular simple cells was learnt using the algorithm described in [11] 
that maximises a nonlinear measure of temporal correlation (TRS) between the 

lVectors x are added to BS if, for y E BS, Ik(x,y) 1 ~ T where threshold T is slowly 
annealed from TO = 1, and the size of BS is set at 400. 



Figure 1: Training on natural images. [a] Stereo Pair. [b] Linear filters that max­
imise TRS [11]. [c] Output of filters for left image. [d] Output of nonlinear complex 
cells in binocular simulation. [e] Output of complex cells in monocular simulation. 

present and a previous output, based upon the transfer function g(y) = In cosh(y). 
We chose this algorithm since it is based on a nonlinear measure of temporal cor­
relation and yet provides a linear sparse-distributed coding, very similar to that 
of lCA for describing simple cells [14] . We did not use the objective function de­
scribed above since in the linear case it yields filters similar to the local Fourier 
series2 . The filters were optimised for this particular stereo pair; simulations using 
a greater variation of more natural images resulted in more spatially localised filters 
very similar to those in [14, 11]. We used only the 20 most predictable filters since 
results did not improve through use of the full set. The simple cell receptive field 
was 8x8, and during learning data was provided by both eyes at one position in the 
image3 . The oriented Gabor-like weight vectors for the 20 cells contributing most 
to the TRS objective function are shown in Figure l[b], and the result of processing 
the left image with these linear filters is shown in Figure l[c]. 

The complex cells received input from these 20 types of simple cells when processing 
both the left and right eye images. Complex cells had a spatial receptive field of 4x4; 

2 An intuitive explanation for this necessity for nonlinearity in the objective function 
is provided in [11]; in brief, the temporal correlation of the output of a Gabor-like linear 
filter is low, whilst a similar correlation for a measure of the power in the filter is high. 

3The dimension of the PeA-whitened space was reduced from 63 to 40, and 6.t = 1, 'f] = 
10-3,0 = 10- 1 ; 105 input vectors were used. 



[a] [b] 

Figure 2: Testing on simulated pair used in [9] . [a] Artificial stereo pair. [b] 
Underlying disparity function. [c] Output of most predictable complex cell trained 
on Figure I[a]. 

each cell therefore received 320 simple cell inputs (2x4x4x20); these were normalised 
to have unit variance and zero mean. The most predictable features were extracted 
for this input vector over 105 time-steps, using the kernel-based method described 
above, using data at just one position in the image. The basis set was made up of 400 
input vectors, and a polynomial kernel of degree 2 was used. The temporal half-lifes 
for estimating the short- and long-term means in U and V were As = 2, Al = 200. 
The algorithm therefore extracts 400 outputs; we display the outputs for the 8 most 
predictable (determined by highest eigenvalues) in Figure I[d]; further values were 
hard to interpret. Below this, in Figure I[e], we show the complex outputs obtained 
if we substitute the right image with the left one in the stereo pair, so making the 
simulation monocular. 

Consider first the monocular simulation in [e] . It is visually apparent how the most 
predictable units are strongly selective for regions of iso-orientation (looking quite 
different to any simple cell response in [c]). In this particular image, it results 
in different "T" -shaped parts of the Pentagon of considerable size being distinctly 
isolated. Since in our network the complex cell receptive field size in the image is 
only 50% greater than that for the simple cells, this implies translation invariance: 
over the time (or space) that a simple cell of the correct orientation gives a strong 
but transitory response, the complex cells provides a strong continuous response. 
That is, its response is invariant to the phase that determines the profile of the 
simple cell response. 

Consider now the stereo simulation in [d]. This tendency is still present (e.g. the 
3rd output), but it is confounded with another parameter that isolates the complete 
shape of the Pentagon from the background. This is most striking in the output 
provided by the first feature; that is, this parameter is the most predictable in 
the image (providing an eigenvalue A = VjU = 7.28, as opposed to A ~ 4 for 
the "T"-shapes in [e]). This parameter is binocular disparity, generated by the 
variation in depth of the Pentagon roof compared to the ground. The proof of this 
lies in Figure 2. Here we have taken the artificial stereo pair used in [9], shown in 
Figure 2 [a] , that has been generated using the known eggshell disparity function 
shown in Figure 2[b]. We presented this to the network trained wholly on the 
Pentagon stereo pair; it can be seen that the most predictable component, shown 
in Figure 2[c], replicates the disparity function of [b]4. 

4The output is somewhat noisy, partly because the image has few linear features like 
those in Figure l[b] ; if we train the simple and complex cells on this image we get a much 
cleaner result . 



3 Discussion 

The simulation above confirms that the linear properties of simple cells, and two 
of the nonlinear properties of complex cells (translation invariance and disparity 
coding) can be extracted simutaneously from natural images through maximising 
functions of temporal coherence in the input. Although these properties have been 
dealt with in others' work discussed above, they have been considered either in 
isolation or through theoretical simulation. It is only because the kernel-based 
method we present allows us to work efficiently with large amounts of data in a 
nonlinear feature space derived from high dimensional input that we have been able 
to extract both complex cell properties together from realistic image data. 

The method described above is computationally efficient. It is also biologically plau­
sible in as much as [a] it uses a reasonable objective function based on temporal 
coherence of output, and [b] the final computation required to extract these most 
predictable outputs could be performed either by Sigma-Pi neurons, or fixed RBF 
networks (as in SFA [1]) . However, we do not claim either that the precise formula­
tion of the objective function is biologically exact , or that a biological system would 
use the same means to arrive at the final architecture that computes the optimal 
solution: the learning algorithm is certainly different. Our approach is therefore 
focussed on the constraints provided by [a] and [b]. 

The method also exploits a distributed representation for maximising the objective 
function that results from the generalised eigenvector solution. Is this plausible 
given the emphasis that has been laid on sparse-coding early in the visual system 
[15]? Sparse representations are often the result of constraining different outputs to 
be uncorrelated, or stronger, independent. However, as one ascends the perceptual 
pathway generating more reduced nonlinear representations, even the constraint of 
uncorrelated output may be too strong, or unnecessary, to create the highly robust 
representations exploited by the brain. For example, Rolls reports and defends a 
highly distributed coding of faces in infero-temporal cortical areas with cells re­
sponding to a large proportion of stimuli to some degree ([16], chapter 5). Our 
method enforces the constraint that successive eigenvectors are orthogonal in the 
metrics C and C and can result in the partly correlated output expected in the 
robust distributed coding Rolls proposes. However, this would not be the case if 
the long-term means used for C are estimated with a temporal half-life sufficiently 
large that these means do not differ from the true expected values. 

Finally, although maximising the sparseness of representation may be inappropriate 
in deeper cortex, one might suggest that the coding of parameters we obtain in our 
simulation is not highly distributed across outputs: in reality each complex cell 
responds to a limited range of disparity and orientation. However, it can be seen 
in Figure l[d]) that there is a clear separation of orientation, and some mixing of 
disparity and orientation-sensitivity. It is a feature of our method that different 
outputs must have different measures of predictability (i.e. eigenvalues) . In the 
case of sparse coding of translation invariance, for example, there is no obvious 
reason why this assumption should be met by cells coding different orientations 
alone; it can however be enforced by coding different mixtures of orientation and 
disparity parameters leading to distinct eigenvalues. There is certainly no practical 
or biological reason why these parameters should be carried separately in the visual 
system (see [1] for discussion). 



In conclusion, this work provides further support for the fruitful approach of ex­
tracting non-trivial parameters through maximisation of objective functions based 
on temporal properties of perceptual input. One of the challenges here is to extend 
current linear models into the nonlinear domain whilst limiting the extra complexity 
they bring, which can lead to excess degrees of freedom and computational prob­
lems. We have described here a kernel-based method that goes some way towards 
this , extracting disparity and translation simultaneously for complex cells trained 
on natural images. 
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