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Abstract

We apply the replica method of Statistical Physics combined with a vari-
ational method to the approximate analytical computation of bootstrap
averages for estimating the generalization error. We demonstrate our ap-
proach on regression with Gaussian processes and compare our results
with averages obtained by Monte-Carlo sampling.

1 Introduction

The application of tools from Statistical Mechanics to analyzing the average case perfor-
mance of learning algorithms has a long tradition in the Neural Computing and Machine
Learning community [1, 2]. When data are generated from a highly symmetric distribution
and the dimension of the data space is large, methods of statistical mechanics of disor-
dered systems allow for the computation of learning curves for a variety of interesting and
nontrivial models ranging from simple perceptrons to Support-vector Machines. Unfor-
tunately, the specific power of this approach, which is able to give explicit distribution
dependent results represents also a major drawback for practical applications. In general,
data distributions are unknown and their replacement by simple model distributions might
only reveal some qualitative behavior of the true learning performance.

In this paper we suggest a novel application of the Statistical Mechanics techniques to
a topic within Machine Learning for which the distribution over data is well known and
controlled by the experimenter. It is given by the resampling of an existing dataset in the
so called bootstrap approach [3]. Creating bootstrap samples of the original dataset by
random resampling with replacement and retraining the statistical model on the bootstrap
sample is a widely applicable statistical technique. By replacing averages over the true
unknown distribution of data with suitable averages over the bootstrap samples one can
estimate various properties such as the bias, the variance and the generalization error of a
statistical model.

While in general bootstrap averages can be approximated by Monte-Carlo sampling, it is
useful to have also analytical approximations which avoid the time consuming retraining
of the model for each sample. Existing analytical approximations (based on asymptotic
techniques) such as the delta method and the saddle point method (see e.g.[5]) require



usually explicit analytical formulas for the estimators of the parameters for a trained model.
These may not be easily obtained for more complex models in Machine Learning. In this
paper, we discuss an application of the replica method of Statistical Physics [4] which
combined with a variational method [6] can produce approximate averages over the random
drawings of bootstrap samples. Explicit formulas for parameter estimates are avoided and
replaced by the implicit condition that such estimates are expectations with respect to a
certain Gibbs distribution to which the methods of Statistical Physics can be well applied.
We demonstrate the method for the case of regression with Gaussian processes (GP) (which
is a kernel method that has gained high popularity in the Machine Learning community in
recent years [7]) and compare our analytical results with results obtained by Monte-Carlo
sampling.

2 Basic setup and Gibbs distribution

We will keep the notation in this section fairly general, indicating that most of the theory
can be developed for a broader class of models. We assume that a fixed set of data �������� �	� � �
���
�
�
� ����� is modeled by a likelihood of the type� � ��� � ��������� ��! �"#%$ �'& � � � � # �)(* (1)

where the “training error” & is parametrized by a parameter � (which can be a finite or even
infinite dimensional object) which must be estimated from the data. We will later specialize
to supervised learning problems where each data point

� � �,+ �.- � consists of an input
+

(usually a finite dimensional vector) and a real label - . In this case, � stands for a function� �,+'� which models the outputs, or for the parameters (like the weights of a neural network)
which parameterize such functions. We will later apply our approach to the mean square
error given by & � � � � # � � /0
1 �

� � ��+ # �  - # � � � (2)

The first basic ingredient of our approach is the assumption that the estimator for the un-
known “true” function � can be represented as the mean with respect to a posterior distri-
bution over all possible � ’s. This avoids the problem of writing down explicit, complicated
formulas for estimators. To be precise, we assume that the statistical estimator 2�
354 (which
is based on the training set �6� ) can be represented as the expectation of � with respect to
the measure 758 �!� � �:9 � /;=< 8 � 9 ����� ��� �"#%$ �>& � � � � # �)(* (3)

which is constructed from a suitable prior distribution < 8 � 9 and the likelihood (1).; �@?BAC< 8 � 9 ����� ��  �"#%$ � & � � � � # � (* (4)

denotes a normalizing partition function. Our choice of (3) does not mean that we restrict
ourselves to Bayesian estimators. By introducing specific (“temperature” like) parameters
in the prior and the likelihood, the measure (3) can be strongly concentrated at its mean
such that maximum likelihood/MAP estimators can be included in our framework.

3 Bootstrap averages

We will explain our analytical approximation to resampling averages for the case of super-
vised learning problems. If we are interested in, say, estimating the expected error on test



points 1 which are not contained in the training set �=� of size � and if we have no hold
out data, we can create artificial data sets � by resampling (with replacement) � data from
the original set � � , where each data point

����� � � is taken with equal probability / � � .
Hence, some of the

���
’s will appear several times in the bootstrap sample and others not at

all. A proxy for the true average test error can be obtained by retraining the model on each
bootstrap training set � , calculating the test error only on those points which are not con-
tained in � and finally averaging over many sets � . In practice, the case � ��� maybe of
main importance, but we will also allow for estimating a lager part of the “learning curve”
by allowing for �	�
� and �	��� . We will not discuss the statistical properties of such
bootstrap estimates and their refinements (such as Efron’s .632 estimate) in this paper, but
refer the reader to the standard literature [3, 5].

For any given set � � , we represent a bootstrap sample � by the vector of “occupation”
numbers � � � � �����
�
��� � � � with 
 �� $ � � � ��� . � � is the number of times example���

appears in the set � . Denoting the expectation over random bootstrap samples by � 3 ,
Efron’s estimator for the bootstrap generalization error is

� � � � �� /�
�" � $ �

� 3 ��������� ��� 2� 3 ��+��)�  - ��� �� 
� 3 8 � � � � � 9 (5)

where we specialized to the square error for testing. Eq.(5) computes the average bootstrap
test error at each data point ! from �6� . The Kronecker symbol, defined by

� � � # � / for! �#" and $ else, guarantees that only realizations of bootstrap training sets � contribute
which do not contain the test point. Introducing the abbreviation% � � � � � � �@� ��+ � �  - � (6)

(which is a linear function of � ), and using the definition of the estimator 2�	3 as an average
of � ’s over the Gibbs distribution (3), the bootstrap estimate (5) can be rewritten as

� � � � � /�
�" � $ �

/� 3 8 � � � � � 9 � 3 ��������� � /; � ? A < 8 � � 9 AC< 8 � � 9 % � � � � �&� � % � � � � ��� ��'
'6����� ��  �"#%$ �

� # � & � � � � � # �)( & � � � � � # �.� (*+*, � (7)

which involves
0

copies (or replicas) � � and � � of the variable � . More complicated types
of test errors which are polynomials or can be approximated by polynomials in 2�	3 can be
rewritten in a similar way, involving more replicas of the variable � .

4 Analytical averages using the “replica trick”

For fixed � , the distribution of � � ’s is multinomial. It is simpler (and does not make a big
difference when � is sufficiently large) when we work with a Poisson distribution for the
size of the set � with � as the mean number of data points in the sample. In this case we
get the simpler, factorizing joint distribution� � � � � �-� $ �

< �.�0/2143� �05 (8)

for the occupation numbers � � where < ��� � � . With Eq. (8) follows � 3 8 � � � � � 9 � /6173
.

1The average is over the unknown distribution of training data sets.



To enable the analytical average over the vector � (which is the “quenched disorder” in
the language of Statistical Physics) it is necessary to introduce the auxiliary quantity��� � � � �� // 17� � � � �" � $ �

� 3 ��������� � ; � 1 � ? A < 8 � � 9 A < 8 � � 9 % � � � � ��� � % � � � � �&� � '
' ����� ��  �"#%$ �

� # � & � � � � � # � ( & � � � � � # �.� (* *, (9)

for � real, which allows to write � � � � �����	� ��
 � � � � � � . The advantage of this definition
is that for integers � � 0

, ��� � � � can be represented in terms of � replicas of the original
variable � for which an explicit average over � � ’s is possible. At the end of all calculations
an analytical continuation to arbitrary real � and the limit �
� $ must be performed. Using
the definition of the partition function (4), we get for integer � � 0

� � � � � � // 14� � � � �" � $ �
� 3 � � � � � � ? �-� $ �

A < 8 � � 9 % � � ��� � � � % � � �
� � � � ' (10)

' ����� ��  �"#%$ �
� # �"� $ � & � � � � � # � (* *, �

Exchanging the expectation over datasets with the expectation over � ’s and using the ex-
plicit form of the distribution (8) we obtain� � � � � ��� � // 14� � � � �" � $ ��� ����� �  �� �-� $ �

/ 1��
����� � � � ��� % � � �
� � � � % � � � � � � ��� (11)

where the brackets � ���
�! denote an average with respect to a Gibbs measure for replicas
which is given by 7 � � � � �
�
���
� � � � � /� � �-� $ �

< 8 � � 9 ����� 8  �" � 9 (12)

where " � � �  ��
�"#%$ �

�-� $ �

/ 1#�
�	� � � �%$ �

(13)

and where the partition function � � has been introduced for convenience to normalize the
measure for �'&� $ . In most nontrivial cases, averages with respect to the measure (12)
can not be calculated exactly. Hence, we have to apply a sensible approximation. Our idea
is to use techniques which have been frequently applied to probabilistic models [10] such
as the variational approximation, the mean field approximation and the TAP approach. In
this paper, we restrict ourself to a variational Gaussian approximation. More advanced
approximations will be given elsewhere.

5 Variational approximation

A method, frequently used in Statistical Physics which has also attracted considerable in-
terest in the Machine Learning community, is the variational approximation [8]. Its goal is
to replace an intractable distribution like (12) by a different, sufficiently close distribution
from a tractable class which we will write in the form7 � � � �-� $ �

< 8 � � 9 ����� 8  �" �� 9 � (14)



7 � � will be used in (11) instead of

7 � to approximate the average.

" �� will be chosen (see
e.g. [10]) to minimize the relative entropy between

7 � � and

7 � resulting in a minimization
of the variational free energy� � ��  ��� ? �-� $ �

AC< 8 � � 9 ����� 8  �" �� 9 ( � " �  " ��  � (15)

being an upper bound to the true free energy

 ��� � � for any integer � . The brackets � ���
�! �
denote averages with respect to the variational distribution (14).

For our application to Gaussian process models, we will now specialize to Gaussian priors< 8 � 9 . For

" �� , we choose the quadratic expression" �� � /�
�"#%$ �

�� /0 �"� � � $ �
2� � � �,+ # � � � ��+ # � � � �,+ # �)( �"� $ � 2� � ��+ # � � � �,+ # �)(* (16)

as a suitable trial Hamiltonian, leading to a Gaussian distribution (14). The functions2� � � ��+ # � and 2� � �,+ # � are the variational parameters to be optimized. To continue the
variational solutions to arbitrary real � , we assume that the optimal parameters should
be replica symmetric, i.e. we set 2� � �,+ # � � 2� �,+ # � as well as 2� � � �,+ # � � 2� �,+ # � for� &��� and 2� ��� �,+ # � � 2� � �,+ # � . The variational free energy can then be expressed by
the local moments (“order parameters” in the language of Statistical Physics) 	 ��+ # � ��� � � �,+ # �  � , 
 �,+�� � + # � �� � � � ��+
� � � � �,+ # �  �  � � � �,+�� �  � � � � �,+ # �  � for � &��� and � ��+�� � + # � ��� � � �,+ � � � � ��+ # �  �  � � � ��+ � � � � �,+ # �  � which have the same replica symmetric structure. Since
each of the � ' � matrices (such as 2� � � ) are assumed to have only two types of entries, it
is possible to obtain variational equations which contain the number � of replicas as a sim-
ple parameter for which the limit � � $ can be explicitly performed (see appendix). In
this limit, the limiting order parameters 	 ��+ # � , 
 �,+ # � + # � are found to have simple inter-
pretations as the (approximate) mean and variance of the predictor 2�	3 �,+ # � with respect to
the average over bootstrap data sets while � ��+�� � + # � becomes the (approximate) bootstrap
averaged posterior covariance.

6 Explicit results for regression with Gaussian processes

We consider a GP model for regression with training energy given by Eq. (2). In this
case, the prior measure < 8 � 9 can be simply represented by an � dimensional Gaussian
distribution for the vector

� � ��+ � � ���
���
� � ��+ � �.� having zero mean and covariance matrix� ��+ � � + # � , where
� ��+ �.- � is the covariance kernel of the GP.

Using the limiting (for � � $ ) values of order parameters, and by approximating

7 � by

7 � �
in Eq.(11), the explicit result for the bootstrap mean square generalization error is found to
be� � � � � // 143 �

�" � $ �

8 � 	 ��+ � �  - � � � ( 
 �,+ � � + � � 9 �"� $ � �
 < � �� 5 /� / ( � � �,+ � � + � � � 1 � � � � (17)

The entire analysis can be repeated for testing (keeping the training energy fixed) with a
general loss function of the type � � 2� 3 �,+7� �  - � . The result is� ��� � � � � � // 143 � � 3 � �" � $ �

� �.� � � � � 2� 3 �,+7� �  - � � � (18)

� // 143 �
�" � $ �

? A�� /61 ��� ���� 0�� �"� $ � �
 < � �� 5 �  	 ��+�� �

 - ��( �"! 
 �,+7� � +�� �/ ( � � �,+ � � + � � � 1 � # �
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Figure 1: Average bootstrapped generalization error on Abalone data using square error
loss (left) and epsilon insensitive loss (right). Simulation (circles) and theory (lines) based
on the same data set � � with � � / $6$2$ data points. The GP model uses an RBF kernel� ��+ � +�� � � �
��� �  � � +  +�� � � � � 0�� � � with

� � ��� on whitened inputs. For the data noise we
set

1 � � $ � / .
We have applied our theory to the Abalone data set [11] where we have computed the
approximate bootstrapped generalization errors for the square error loss and the so-called� -insensitive loss which is defined by

� � � � � �� 	 0 if � � � � 8 $ � � /
 �
 � � 9

�
� ��� 1 ���

1��
��� � �� � � if � � � � 8 � /

 �
 � � � � / (

 � � 9� � �  � if � � � � 8 � / (


 � � ��� 9 (19)

with

��� � 2�	3 �,+ � �  - � . We have set


 � $ � � and � � $ � / . The bootstrap average from our
theory is obtained from Eq.(18). Figure 1 shows the generalization error measured by the
square error loss (Eq.(17), left panel) as well as the one measured by the � -insensitive loss
(right panel). Our theory (line) is compared with simulations (circles) which were based
on Monte-Carlo sampling averages that were computed using the same data set ��� having� � / $2$6$ . The Monte-Carlo training sets � of size � are obtained by sampling from� � with replacement. We find a good agreement between theory and simulations in the
region were � � � . When we oversample the data set � � � , however, the agreement is
not so good and corrections to our variational Gaussian approximation would be required.
Figure 2 shows the bootstrap average of the posterior variance

�� 
 �� $ � � �,+7� � +�� � over the
whole data set � � , � � / $2$2$ , and compares our theory (line) with simulations (circles)
which were based on Monte-Carlo sampling averages. The overall approximation looks
better than for the bootstrap generalization error.

Finally, it is important to note that all displayed theoretical learning curves have been ob-
tained computationally much faster than their respective simulated learning curves.

7 Outlook

The replica approach to bootstrap averages can be extended in a variety of different di-
rections. Besides the average generalization error, one can compute its bootstrap sample
fluctuations by introducing more complicated replica expressions. It is also straightfor-
ward to apply the approach to more complex problems in supervised learning which are
related to Gaussian processes, such as GP classifiers or Support-vector Machines. Since
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Figure 2: Bootstrap averaged posterior variance for Abalone data. Simulation (circles) and
theory (line) based on the same data set �6� with � � / $2$6$ data points.

our method requires the solution of a set of variational equations of the size of the original
training set, we can expect that its computational complexity should be similar to the one
needed for making the actual predictions with the basic model. This will also apply to the
problem of very large datasets, where one may use a variety of well known sparse approx-
imations (see e.g. [9] and references therein). It will also be important to assess the quality
of the approximation introduced by the variational method and compare it to alternative
approximation techniques in the computation of the replica average (11), such as the mean
field method and its more complex generalizations (see e.g. [10]).
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Appendix: Variational equations

For reference, we will give the explicit form of the equations for variational and order
parameters in the limit �
� $ . The derivations will be given elsewhere. We obtain

	 �,+�� � �  /�
�"#%$ �

� �,+7� � + # � 2� �,+ # � (20)


 ��+ � � + � � �  /�
�"#%$ �

� �,+ � � + # � � �,+ � � + # � 2� ��+ # � (21)

where the matrix � �,+7� � + # � is given by� ��� � 1 � (���� 1 �

(22)

where
� � # � � �,+ � � + # � is the kernel matrix. Finally

� � # � �� � � # � 2� � ��+ � �  2� �,+ � �.� .
The order parameter equations Eqs.(20-22) must be solved together with the variational
equations which are given by� 2� ��+ � � � �� 1 � ( � �,+�� � +�� �.� (23)



2� ��+ � � �  - � � 2� �,+ � � (24)2� ��+��)� �  8 � 	 ��+�� �  - � � � ( 
 �,+�� � +7� � 9 � � 2� �,+ � �%� �� (25)

with
� 2� ��+�� � � � 2� � �,+7� �  2� ��+�� �.� .

Combining Eqs.(22) and (23), a self consistent matrix equation � � ��� ( � �'� 1 � �
is

obtained where
�

depends on the diagonal elements � ��+ � � + � � . Its iterative solution (based
on a good initial guess for � ��+ � � + � � ) requires usually only a few iterations. The order
parameters 	 �,+7� � and 
 ��+�� � +�� � can then be solved subsequently using Eq.(20,21) with
(24,25).
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