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Abstract 

We consider the general problem of utilizing both labeled and un­
labeled data to improve classification accuracy. Under t he assump­
tion that the data lie on a submanifold in a high dimensional space, 
we develop an algorithmic framework to classify a partially labeled 
data set in a principled manner . The central idea of our approach is 
that classification functions are naturally defined only on t he sub­
manifold in question rather than the total ambient space. Using the 
Laplace Beltrami operator one produces a basis for a Hilbert space 
of square integrable functions on the submanifold. To recover such 
a basis , only unlabeled examples are required. Once a basis is ob­
tained , training can be performed using the labeled data set. Our 
algorithm models the manifold using the adjacency graph for the 
data and approximates the Laplace Beltrami operator by the graph 
Laplacian. Practical applications to image and text classification 
are considered. 

1 Introduction 

In many practical applications of data classification and data mining , one finds a 
wealth of easily available unlabeled examples , while collecting labeled examples can 
be costly and time-consuming . Standard examples include object recognition in im­
ages, speech recognition, classifying news articles by topic. In recent times , genetics 
has also provided enormous amounts of readily accessible data. However, classi­
fication of this data involves experimentation and can be very resource intensive. 
Consequently it is of interest to develop algorithms that are able to utilize both 
labeled and unlabeled data for classification and other purposes. Although the area 
of partially labeled classification is fairly new, a considerable amount of work has 
been done in that field since the early 90 's , see [2, 4, 7]. In this paper we address 
the problem of classifying a partially labeled set by developing the ideas proposed 
in [1] for data representation. In particular , we exploit the intrinsic structure of 
the data to improve classification with unlabeled examples under the assumption 



that the data resides on a low-dimensional manifold within a high-dimensional rep­
resentation space. In some cases it seems to be a reasonable assumption that the 
data lies on or close to a manifold. For example a handwritten digit 0 can be 
fairly accurately represented as an ellipse , which is completely determined by the 
coordinates of its foci and the sum of the distances from the foci to any point. 
Thus the space of ellipses is a five-dimensional manifold. An actual handwritten 0 
would require more parameters, but perhaps not more than 15 or 20. On the other 
hand the dimensionality of the ambient representation space is the number of pixels 
which is typically far higher. For other types of data the question of the manifold 
structure seems significantly more involved. While there has been recent work on 
using manifold structure for data representation ([6 , 8]), the only other application 
to classification problems that we are aware of, was in [7] , where the authors use a 
random walk on the data adjacency graph for partially labeled classification. 

2 Why Manifold Structure IS Useful for Partially 
Supervised Learning 

To provide a motivation for using a manifold structure, consider a simple synthetic 
example shown in Figure l. The two classes consist of two parts of the curve shown 
in the first panel (row 1). We are given a few labeled points and 500 unlabeled 
points shown in panels 2 and 3 respectively. The goal is to establish the identity of 
the point labeled with a question mark. By observing the picture in panel 2 (row 1) 
we see that we cannot confidently classify"?" by using the labeled examples alone. 
On the other hand, the problem seems much more feasible given the unlabeled 
data shown in panel 3. Since there is an underlying manifold, it seems clear at 
the outset that the (geodesic) distances along the curve are more meaningful than 
Euclidean distances in the plane. Therefore rather than building classifiers defined 
on the plane (lR 2) it seems preferable to have classifiers defined on the curve itself. 
Even though the data has an underlying manifold, the problem is still not quite 
trivial since the two different parts of the curve come confusingly close to each 
other. There are many possible potential representations of the manifold and the 
one provided by the curve itself is unsatisfactory. Ideally, we would like to have a 
representation of the data which captures the fact that it is a closed curve. More 
specifically, we would like an embedding of the curve where the coordinates vary 
as slowly as possible when one traverses the curve. Such an ideal representation 
is shown in the panel 4 (first panel of the second row). Note that both represent 
the same underlying manifold structure but with different coordinate functions. It 
turns out (panel 6) that by taking a two-dimensional representation of the data 
with Laplacian Eigenmaps [1] , we get very close to the desired embedding. Panel 5 
shows the locations of labeled points in the new representation space. We see that 
"?" now falls squarely in the middle of "+" signs and can easily be identified as a 
"+". 

This artificial example illustrates that recovering the manifold and developing clas­
sifiers on the manifold itself might give us an advantage in classification problems. 
To recover the manifold, all we need is unlabeled data. The labeled data is then 
used to develop a classifier defined on this manifold. However we need a model for 
the manifold to utilize this structure. The model used here is that of a weighted 
graph whose vertices are data points. Two data points are connected with an edge if 
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Figure 1: Top row: Panel l. Two classes on a plane curve. Panel 2. Labeled 
examples. "?" is a point to be classified. Panel 3. 500 random unlabeled examples. 
Bottom row: Panel 4. Ideal representation of the curve. Panel 5. Positions of 
labeled points and "?" after applying eigenfunctions of the Laplacian. Panel 6. 
Positions of all examples. 

and only if the points are sufficiently close. To each edge we can associate a distance 
between the corresponding points. The "geodesic distance" between two vertices is 
the length of the shortest path between them on the adjacency graph. Once we set 
up an approximation to the manifold, we need a method to exploit the structure 
of the model to build a classifier. One possible simple approach would be to use 
the "geodesic nearest neighbors" . However , while simple and well-motivated , this 
method is potentially unstable. A related more sophisticated method based on a 
random walk on the adjacency graph is proposed in [7]. We also note the approach 
taken in [2] which uses mincuts of certain graphs for partially labeled classifications. 

Our approach is based on the Laplace-Beltrami operator defined on Riemannian 
manifolds (see [5]). The eigenfunctions of the Laplace Beltrami operator provide a 
natural basis for functions on the manifold and the desired classification function 
can be expressed in such a basis. The Laplace Beltrami operator can be estimated 
using unlabeled examples alone and the classification function is then approximated 
using the labeled data. In the next two sections we describe our algorithm and the 
theoretical underpinnings in some detail. 

3 Description of the Algorithm 

Given k points X l, . . . , X k E IR I , we assume that the first s < k points have labels 
Ci, where Ci E {- I, I} and the rest are unlabeled. The goal is to label the unlabeled 
points. We also introduce a straightforward extension of the algorithm for the case 
of more than two classes. 

Step 1 [Constructing the Adja cency Graph with n nearest neighbors]. Nodes i and 



j corresponding to the points Xi and Xj are connected by an edge if i is among n 
nearest neighbors of j or j is among n nearest neighbors of i. The distance can be 
the standard Euclidean distance in II{ I or some other appropriately defined distance. 
We take Wij = 1 if points Xi and Xj are connected and Wij = 0 otherwise. For a 
discussion about the appropriate choice of weights, and connections to the heat 
kernel see [1]. 

Step 2. [Eigenfunctions] Compute p eigenvectors e1 , ... , ep corresponding to the p 
smallest eigenvalues for the eigenvector problem Le = Ae where L = D - W is the 
graph Laplacian for the adjacency graph. Here W is the adjacency matrix defined 
above and D is a diagonal matrix of the same size as W satisfying Dii = 2::j Wij. 
Laplacian is a symmetric , positive semidefinite matrix which can be thought of as 
an operator on functions defined on vertices of the graph . 

Step 3. [Building the classifier] To approximate the class we minimize t he error func­

tion Err(a) = 2:::=1 (Ci - 2::~=1 ajej(i)) 2 where p is the number of eigenfunctions 

we wish to employ, the sum is taken over all labeled points and the minimization is 
considered over the space of coefficients a = (a1' ... ,apf. The solution is given by 

( T )-1 T a = E 1ab Elab E 1ab C 

where c = (C1 , ' .. ,Cs f and Elab is an s x p matrix whose i, j entry is ej (i). For 
the case of several classes , we build a one-against-all classifier for each individual 
class. 

Step 4. [Classifying unlabeled points] If Xi, i > s is an unlabeled point we put 

{ I , 
Ci = -1 , 

This, of course, is just applying a linear classifier constructed in Step 3. If there are 
several classes , one-against-all classifiers compete using 2::~ =1 aj ej (i) as a confidence 
measure. 

4 Theoretical Interpretation 

Let M C II{ k be an n-dimensional compact Riemannian manifold isometrically 
embedded in II{ k for some k. Intuitively M can be thought of as an n-dimensional 
"surface" in II{ k. Riemannian structure on M induces a volume form that allows 
us to integrate functions defined on M. The square integrable functions form a 
Hilbert space .c2(M). The Laplace-Beltrami operator 6.M (or just 6.) acts on 
twice differentiable functions on M. There are three important points that are 
relevant to our discussion here. 

The Laplacian provides a basis on .c2 (M): 
It can be shown (e.g. , [5]) that 6. is a self-adjoint positive semidefinite operator and 
that its eigenfunctions form a basis for the Hilbert space .c2(M) . The spectrum of 6. 
is discret e (provided M is compact) , with the smallest eigenvalue 0 corresponding 
to the constant eigenfunction. Therefore any f E .c2(M) can be written as f(x) = 
2::~o ai ei(x) , where ei are eigenfunctions, 6.ei = Ai ei. 

The simplest nontrivial example is a circle Sl. 6. S1 f( ¢) - d'li,</» . Therefore 



the eigenfunctions are given by - d:121» = e( if;), where I( if;) is a 7r-periodic func­

tion. It is easy to see that all eigenfunctions of 6. are of the form e( if; ) = sin( nif; ) 
or e( if;) = cos( nif;) with eigenvalues {l2, 22, ... }. Therefore, we see that any 7r­
periodic £2 function 1 has a convergent Fourier series expansion given by I( if;) = 
2::~= o an sin( nif; ) + bn cos( nif;). In general, for any manifold M , the eigenfunctions 
of the Laplace-Beltrami operator provide a natural basis for £2(M). However 6. 
provides more than just a basis , it also yields a measure of smoothness for functions 
on the manifold. 

The Laplacian as a snlOothness functional: 
A simple measure of the degree of smoothness for a function 1 on a unit circle 51 is 
the "smoothness functional" S(J) = J I/( if;)' 12 dif;. If S(J) is close to zero, we think 

5' 
of 1 as being "smooth" . Naturally, constant functions are the most "smooth" . 
Integration by parts yields S(J) J f'( if; )dl J 16.ldif; = (6./,1)£.2(51)' In 

5' 5' 
general , if I: M ----+ ~, then 

S(J) d~f J IV/1 2dp = J 16.ldp = (6./ , I)£.2(M ) 

M M 

where Viis the gradient vector field of f. If the manifold is ~n then VI = 
",n_ 1 !!La a -aa . ' In general , for an n-manifold , the expression in a local coordinate L~_ X t X t 

chart involves the coefficients of the m etric tensor. Therefore the smoothness of a 
unit norm eigenfunction ei of 6. is controlled by the corresponding eigenvalue Ai 
since 5(ei) = (6. ei, ei)£.2(M) = Ai. For an arbitrary 1 = 2::i [ti ei, we can write S(J) 
as 

A Reproducing Kernel Hilbert Space can be constructed from S. A1 = 0 is the 
smallest eigenvalue for which the corresponding eigenfunction is the constant func­
tion e1 = 1'(1). It can also be shown that if M is compact and connected there 
are no other eigenfunctions with eigenvalue O. Therefore approximating a function 
I( x) :::::: 2::; ai ei (x) in terms of the first p eigenfunctions of 6. is a way of controlling 
the smoothness of the approximation. The optimal approximation is obtained by 

minimizing the £2 norm of the error : a = argmin J (/ (X) - t aiei(X)) 2 dp. 
a=(a" ... ,ap ) M , 

This approximation is given by a projection in £2 onto the span of the first p 

eigenfunctions ai = J ei(x )/(x)dp = (ei ' I) £.2(M) In practice we only know the 
M 

values of 1 at a finite number of points X l, ... , X n and therefore have to solve a 

discrete version of this problem a = _ a~gmi~ .t (/(Xi ) - t O,jej(Xi )) 2 The so-
a=(a" ... ,ap ),=l ) =1 

lution to this standard least squares problem is given by aT = (ET E)- l EyT, where 
Eij = ei (Xj) and y = (J(xd , · .. , I(xn)). 

Conection with the Graph Laplacian: 
As we are approximating a manifold with a graph, we need a suitable m easure 
of smoothness for functions defined on the graph. It turns out that many of the 
concepts in the previous section have parallels in graph theory (e.g ., see [3]). Let 
G = (V, E) be a weighted graph on n vertices. We assume that the vertices are 



numbered and use the notation i ~ j for adjacent vertices i and j. The graph 
Laplacian of G is defined as L = D - W , where W is the weight matrix and D is a 
diagonal matrix, Dii = I:j Wj i. L can be thought of as an operator on functions 
defined on vertices of the graph. It is not hard to see that L is a self-adj oint positive 
semidefinite operator. By the (finite dimensional) spectral theorem any function on 
G can be decomposed as a sum of eigenfunctions of L. If we think of G as a model 
for the manifold M it is reasonable to assume that a function on G is smooth if it 
does not change too much between nearby points. If f = (11 , ... , In) is a function 
on G, then we can formalize that intuition by defining the smoothness functional 
SG(f) = I: Wij(Ji - h)2. It is not hard to show that SG(f) = f LfT = (f , Lf)G = 

n 

I: Ai (f , ei) G which is the discrete analogue of the integration by parts from the 
i =l 
previous section . The inner product here is the usual Euclidean inner product on 
the vector space with coordinates indexed by the vertices of G , ei are normalized 
eigenvectors of L, Lei = Aiei, Ilei ll = 1. All eigenvalues are non-negative and the 
eigenfunctions corresponding to the smaller eigenvalues can be thought as "more 
smooth". The smallest eigenvalue A1 = 0 corresponds to the constant eigenvector 
e1· 

5 Experimental Results 

5.1 Handwritten Digit Recognition 

We apply our techniques to the problem of optical character recognition. We use 
the popular MNIST dataset which contains 28x28 grayscale images of handwritten 
digits. 1 We use the 60000 image training set for our experiments. For all experi­
ments we use 8 nearest neighbours to compute the adjacency matrix. The adjacency 
matrices are very sparse which makes solving eigenvector problems for matrices as 
big as 60000 by 60000 possible. For a particular trial, we fix the number of labeled 
examples we wish to use. A random subset of the 60000 images is used with labels 
to form the labeled set L. The rest of the images are used without labels to form the 
unlabeled data U. The classification results (for U) are averaged over 20 different 
random draws for L. Shown in fig. 2 is a summary plot of classification accuracy on 
the unlabeled set comparing the nearest neighbors baseline with our algorithm that 
retains the number of eigenvectors by following taking it to be 20% of the number 
of labeled points. The improvements over the base line are significant, sometimes 
exceeding 70% depending on the number of labeled and unlabeled examples . With 
only 100 labeled examples (and 59900 unlabeled examples), the Laplacian classifier 
does nearly as well as the nearest neighbor classifier with 5000 labeled examples. 
Similarly, with 500/59500 labeled/unlabeled examples, it does slightly better than 
the nearest neighbor base line using 20000 labeled examples By comparing the re­
sults for the total 60000 point data set, and 10000 and 1000 subsets we see that 
adding unlabeled data consistently improves classification accuracy. When almost 
all of the data is labeled , the performance of our classifier is close to that of k-NN. It 
is not particularly surprising as our method uses the nearest neighbor information. 

1 We use the first 100 principal components of the set of all images to represent each 
image as a 100 dimensional vector. 
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Figure 2: MNIST data set, Percentage error rates for different numbers of labeled 
and unlabeled points compared to best k-NN base line, 

5.2 Text Classification 

The second application is text classification using the popular 20 Newsgroups data 
set, This data set contains approximately 1000 postings from each of 20 different 
newsgroups, Given an article , the problem is to determine to which newsgroup it 
was posted, We tokenize the articles using the software package Rainbow written 
by Andrew McCallum, We use a "stop-list" of 500 most common words to be 
excluded and also exclude headers , which among other things contain the correct 
identification of the newsgroup, Each document is then represented by the counts 
of the most frequent 6000 words normalized to sum to L Documents with 0 total 
count are removed , thus leaving us with 19935 vectors in a 6000-dimensional space, 
We follow the same procedure as wit h the MNIST digit data above , A random 
subset of a fixed size is taken with labels to form L, The rest of the dataset is 
considered to be U, We average the results over 20 random splits2 , As with the 
digits , we take the number of nearest neighbors for the algorithm to be 8, In fig, 3 
we summarize the results by taking 19935 , 2000 and 600 total points respectively 
and calculating the error rate for different numbers oflabeled points, The number of 
eigenvectors used is always 20% of the number of labeled points, We see that having 
more unlabeled points improves the classification error in most cases although when 
there are very few labeled points , the differences are smalL 
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