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Abstract

We develop and test new machine learning methods for the predic-
tion of topological representations of protein structures in the form
of coarse- or fine-grained contact or distance maps that are transla-
tion and rotation invariant. The methods are based on generalized
input-output hidden Markov models (GIOHMMSs) and generalized
recursive neural networks (GRNNs). The methods are used to pre-
dict topology directly in the fine-grained case and, in the coarse-
grained case, indirectly by first learning how to score candidate
graphs and then using the scoring function to search the space of
possible configurations. Computer simulations show that the pre-
dictors achieve state-of-the-art performance.

1 Introduction: Protein Topology Prediction

Predicting the 3D structure of protein chains from the linear sequence of amino
acids is a fundamental open problem in computational molecular biology [1]. Any
approach to the problem must deal with the basic fact that protein structures are
translation and rotation invariant. To address this invariance, we have proposed a
machine learning approach to protein structure prediction [4] based on the predic-
tion of topological representations of proteins, in the form of contact or distance
maps. The contact or distance map is a 2D representation of neighborhood rela-
tionships consisting of an adjacency matrix at some distance cutoff (typically in the
range of 6 to 12 A), or a matrix of pairwise Euclidean distances. Fine-grained maps
are derived at the amino acid or even atomic level. Coarse maps are obtained by
looking at secondary structure elements, such as helices, and the distance between
their centers of gravity or, as in the simulations below, the minimal distances be-
tween their C, atoms. Reasonable methods for reconstructing 3D coordinates from
contact/distance maps have been developed in the NMR literature and elsewhere



Figure 1: Bayesian network for bidirectional IOHMMSs consisting of input units,
output units, and both forward and backward Markov chains of hidden states.

[14] using distance geometry and stochastic optimization techniques. Thus the main
focus here is on the more difficult task of contact map prediction.

Various algorithms for the prediction of contact maps have been developed, in par-
ticular using feedforward neural networks [6]. The best contact map predictor in the
literature and at the last CASP prediction experiment reports an average precision
[True Positives/(True Positives + False Positives)] of 21% for distant contacts, i.e.
with a linear distance of 8 amino acid or more [6] for fine-grained amino acid maps.
While this result is encouraging and well above chance level by a factor greater
than 6, it is still far from providing sufficient accuracy for reliable 3D structure
prediction. A key issue in this area is the amount of noise that can be tolerated in
a contact map prediction without compromising the 3D-reconstruction step. While
systematic tests in this area have not yet been published, preliminary results appear
to indicate that recovery of as little as half of the distant contacts may suffice for
proper reconstruction, at least for proteins up to 150 amino acid long (Rita Casa-
dio and Piero Fariselli, private communication and oral presentation during CASP4
[10]).

It is important to realize that the input to a fine-grained contact map predictor
need not be confined to the sequence of amino acids only, but may also include
evolutionary information in the form of profiles derived by multiple alignment of
homologue proteins, or structural feature information, such as secondary structure
(alpha helices, beta strands, and coils), or solvent accessibility (surface/buried), de-
rived by specialized predictors [12, 13]. In our approach, we use different GIOHMM
and GRNN strategies to predict both structural features and contact maps.

2 GIOHMM Architectures

Loosely speaking, GIOHMMs are Bayesian networks with input, hidden, and output
units that can be used to process complex data structures such as sequences, images,
trees, chemical compounds and so forth, built on work in, for instance, [5, 3, 7, 2, 11].
In general, the connectivity of the graphs associated with the hidden units matches
the structure of the data being processed. Often multiple copies of the same hidden
graph, but with different edge orientations, are used in the hidden layers to allow
direct propagation of information in all relevant directions.
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Figure 2: 2D GIOHMM Bayesian network for processing two-dimensional objects
such as contact maps, with nodes regularly arranged in one input plane, one output
plane, and four hidden planes. In each hidden plane, nodes are arranged on a
square lattice, and all edges are oriented towards the corresponding cardinal corner.
Additional directed edges run vertically in column from the input plane to each
hidden plane, and from each hidden plane to the output plane.

To illustrate the general idea, a first example of GIOHMM is provided by the bidi-
rectional IOHMMs (Figure 1) introduced in [2] to process sequences and predict
protein structural features, such as secondary structure. Unlike standard HMMs
or IOHMMS used, for instance in speech recognition, this architecture is based on
two hidden markov chains running in opposite directions to leverage the fact that
biological sequences are spatial objects rather than temporal sequences. Bidirec-
tional IOHMMs have been used to derive a suite of structural feature predictors
[12, 13, 4] available through http://promoter.ics.uci.edu/BRNN-PRED/. These
predictors have accuracy rates in the 75-80% range on a per amino acid basis.

2.1 Direct Prediction of Topology

To predict contact maps, we use a 2D generalization of the previous 1D Bayesian
network. The basic version of this architecture (Figures 2) contains 6 layers of
units: input, output, and four hidden layers, one for each cardinal corner. Within
each column indexed by ¢ and j, connections run from the input to the four hidden
units, and from the four hidden units to the output unit. In addition, the hidden
units in each hidden layer are arranged on a square or triangular lattice, with all
the edges oriented towards the corresponding cardinal corner. Thus the parameters
of this two-dimensional GIOHMMs, in the square lattice case, are the conditional
probability distributions:
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In a contact map prediction at the amino acid level, for instance, the (i, j) output
represents the probability of whether amino acids ¢ and j are in contact or not.



This prediction depends directly on the (4,7) input and the four-hidden units in
the same column, associated with omni-directional contextual propagation in the
hidden planes. In the simulations reported below, we use a more elaborated input
consisting of a 20 x 20 probability matrix over amino acid pairs derived from a
multiple alignment of the given protein sequence and its homologues, as well as
the structural features of the corresponding amino acids, including their secondary
structure classification and their relative exposure to the solvent, derived from our
corresponding predictors.

It should be clear how GIOHMM ideas can be generalized to other data structures
and problems in many ways. In the case of 3D data, for instance, a standard
GIOHMM would have an input cube, an output cube, and up to 8 cubes of hidden
units, one for each corner with connections inside each hidden cube oriented towards
the corresponding corner. In the case of data with an underlying tree structure, the
hidden layers would correspond to copies of the same tree with different orientations
and so forth. Thus a fundamental advantage of GIOHMMs is that they can process
a wide range of data structures of variable sizes and dimensions.

2.2 Indirect Prediction of Topology

Although GIOHMMs allow flexible integration of contextual information over ranges
that often exceed what can be achieved, for instance, with fixed-input neural net-
works, the models described above still suffer from the fact that the connections
remain local and therefore long-ranged propagation of information during learning
remains difficult. Introduction of large numbers of long-ranged connections is com-
putationally intractable but in principle not necessary since the number of contacts
in proteins is known to grow linearly with the length of the protein, and hence
connectivity is inherently sparse. The difficulty of course is that the location of the
long-ranged contacts is not known.

To address this problem, we have developed also a complementary GIOHMM ap-
proach described in Figure 3 where a candidate graph structure is proposed in the
hidden layers of the GIOHMM, with the two different orientations naturally associ-
ated with a protein sequence. Thus the hidden graphs change with each protein. In
principle the output ought to be a single unit (Figure 3b) which directly computes
a global score for the candidate structure presented in the hidden layer. In order
to cope with long-ranged dependencies, however, it is preferable to compute a set
of local scores (Figure 3c), one for each vertex, and combine the local scores into a
global score by averaging.

More specifically, consider a true topology represented by the undirected contact
graph G* = (V, E*), and a candidate undirected prediction graph G = (V, E). A
global measure of how well E approximates E* is provided by the information-
retrieval Fy score defined by the normalized edge-overlap Fy = 2|E N E*|/(|E| +
|E*|) =2PR/(P + R), where P = |[E N E*|/|E| is the precision (or specificity) and
R = |EN E*|/|E*| is the recall (or sensitivity) measure. Obviously, 0 < F} <1
and F; = 1 if and only if £ = E*. The scoring function F; has the property of
being monotone in the sense that if |E| = |E’'| then F}(F) < Fy(E') if and only if
|ENE*| <|E'NE*|. Furthermore, if E' = E'U {e} where e is an edge in E* but
not in E, then Fy(E’') > Fi(F). Monotonicity is important to guide the search in
the space of possible topologies. It is easy to check that a simple search algorithm
based on F; takes on the order of O(|V|?) steps to find E*, basically by trying all
possible edges one after the other. The problem then is to learn F}, or rather a
good approximation to Fj.

To approximate F;, we first consider a similar local measure F,, by considering the
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Figure 3: Indirect prediction of contact maps. (a) target contact graph to be
predicted. (b) GIOHMM with two hidden layers: the two hidden layers correspond
to two copies of the same candidate graph oriented in opposite directions from one
end of the protein to the other end. The single output O is the global score of how
well the candidate graph approximates the true contact map. (c) Similar to (b) but
with a local score O(v) at each vertex. The local scores can be averaged to produce
a global score. In (b) and (c) I(v) represents the input for vertex v, and H* (v) and
HP(v) are the corresponding hidden variables.

set B, of edges adjacent to vertex v and F, = 2|E, N E}|/(|Ey| + |E}|) with the
global average F' =) F,/|V|]. If n and n* are the average degrees of G and G*,
it can be shown that:
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where n+ ¢, (resp. n*+¢€}) is the degree of v in G (resp. in G*). In particular, if G
and G* are regular graphs, then Fy (F) = F(FE) so that F' is a good approximation
to Fy. In the contact map regime where the number of contacts grows linearly with
the length of the sequence, we should have in general |E| = |E*| =~ (1 4+ «)|V] so
that each node on average has n = n* = 2(1 4 «) edges. The value of a depends of
course on the neighborhood cutoff.

As in reinforcement learning, to learn the scoring function one is faced with the
problem of generating good training sets in a high dimensional space, where the
states are the topologies (graphs), and the policies are algorithms for adding a
single edge to a given graph. In the simulations we adopt several different strate-
gies including static and dynamic generation. Within dynamic generation we use
three exploration strategies: random exploration (successor graph chosen at ran-
dom), pure exploitation (successor graph maximizes the current scoring function),
and semi-uniform exploitation to find a balance between exploration and exploita-
tion [with probability e (resp. 1 — €) we choose random exploration (resp. pure
exploitation)].



3 GRNN Architectures

Inference and learning in the protein GIOHMMs we have described is computa-
tionally intensive due to the large number of undirected loops they contain. This
problem can be addressed using a neural network reparameterization assuming that:
(a) all the nodes in the graphs are associated with a deterministic vector (note that
in the case of the output nodes this vector can represent a probability distribution
so that the overall model remains probabilistic); (b) each vector is a deterministic
function of its parents; (c) each function is parameterized using a neural network (or
some other class of approximators); and (d) weight-sharing or stationarity is used
between similar neural networks in the model. For example, in the 2D GIOHMM
contact map predictor, we can use a total of 5 neural networks to recursively com-
pute the four hidden states and the output in each column in the form:
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In the NE plane, for instance, the boundary conditions are set to H g E—=0fori=0
or j = 0. The activity vector associated with the hidden unit H;; NE depends on the

local input I;;, and the activity vectors of the units Hj NE and HNE.| . Activity
in NE plane can be propagated row by row, West to East and from the first row
to the last (from South to North), or column by column South to North, and from
the first column to the last. These GRNN architectures can be trained by gradient
descent by unfolding the structures in space, leveraging the acyclic nature of the
underlying GIOHMMs.

4 Data

Many data sets are available or can be constructed for training and testing purposes,
as described in the references. The data sets used in the present simulations are
extracted from the publicly available Protein Data Bank (PDB) and then redun-
dancy reduced, or from the non-homologous subset of PDB Select (ftp://ftp.embl-
heidelberg.de/pub/databases/). In addition, we typically exclude structures with
poor resolution (less than 2.5-3 A), sequences containing less than 30 amino acids,
and structures containing multiple sequences or sequences with chain breaks. For
coarse contact maps, we use the DSSP program [9] (CMBI version) to assign sec-
ondary structures and we remove also sequences for which DSSP crashes. The
results we report for fine-grained contact maps are derived using 424 proteins with
lengths in the 30-200 range for training and an additional non-homologous set of
48 proteins in the same length range for testing. For the coarse contact map, we
use a set of 587 proteins of length less than 300. Because the average length of a
secondary structure element is slightly above 7, the size of a coarse map is roughly
2% the size of the corresponding amino acid map.

5 Simulation Results and Conclusions

We have trained several 2D GIOHMM/GRNN models on the direct prediction of
fine-grained contact maps. Training of a single model typically takes on the order of
a week on a fast workstation. A sample of validation results is reported in Table 1 for
four different distance cutoffs. Overall percentages of correctly predicted contacts



Table 1: Direct prediction of amino acid contact maps. Column 1: four distance
cutoffs. Column 2, 3, and 4: overall percentages of amino acids correctly classified
as contacts, non-contacts, and in total. Column 5: Precision percentage for distant
contacts (| — j| > 8) with a threshold of 0.5. Single model results except for last
line corresponding to an ensemble of 5 models.

Cutoff | Contact | Non-Contact | Total | Precision (P)
6 A 714 .998 .985 594

8 A 638 .998 .970 670

10 A 512 .993 931 557

12 A 433 .987 878 .549

12 A 445 .990 .883 717

and non-contacts at all linear distances, as well as precision results for distant
contacts (]i — j| > 8) are reported for a single GIOHMM/GRNN model. The
model has & = 14 hidden units in the hidden and output layers of the four hidden
networks, as well as in the hidden layer of the output network. In the last row, we
also report as an example the results obtained at 124 by an ensemble of 5 networks
with £k = 11,12,13,14 and 15. Note that precision for distant contacts exceeds all
previously reported results and is well above 50%.

For the prediction of coarse-grained contact maps, we use the indirect
GIOHMM/GRNN strategy and compare different exploration/exploitation strate-
gies: random exploration, pure exploitation, and their convex combination (semi-
uniform exploitation). In the semi-uniform case we set the probability of random
uniform exploration to € = 0.4. In addition, we also try a fourth hybrid strategy in
which the search proceeds greedily (i.e. the best successor is chosen at each step,
as in pure exploitation), but the network is trained by randomly sub-sampling the
successors of the current state. FEight numerical features encode the input label
of each node: one-hot encoding of secondary structure classes; normalized linear
distances from the N to C terminus; average, maximum and minimum hydrophobic
character of the segment (based on the Kyte-Doolittle scale with a moving window
of length 7). A sample of results obtained with 5-fold cross-validation is shown in
Table 2. Hidden state vectors have dimension £ = 5 with no hidden layers. For each
strategy we measure performances by means of several indices: micro and macro-
averaged precision (mP, M P), recall (mR, MR) and F; measure (mFy, MFy).
Micro-averages are derived based on each pair of secondary structure elements in
each protein, whereas macro-averages are obtained on a per-protein basis, by first
computing precision and recall for each protein, and then averaging over the set of
all proteins. In addition, we also measure the micro and macro averages for speci-
ficity in the sense of percentage of correct prediction for non-contacts (mP(nc),
MP(nc)). Note the tradeoffs between precision and recall across the training meth-
ods, the hybrid method achieving the best F'1 results.

Table 2: Indirect prediction of coarse contact maps with dynamic sampling.

Strategy mP | mP(nc) | mR | mF1 | MP | MP(nc) | MR | MF}
Random exploration | .715 769 418 | 518 | 767 .709 469 | .574
Semi-uniform 454 787 .631 | .526 | .507 767 702 | .588
Pure exploitation 431 .806 726 | 539 | .481 .793 787 | .596
Hybrid A17 .834 790 | 546 | 474 .821 .843 | .607




We have presented two approaches, based on a very general IOHMM /RNN frame-
work, that achieve state-of-the-art performance in the prediction of proteins contact
maps at fine and coarse-grained levels of resolution. In principle both methods can
be applied to both resolution levels, although the indirect prediction is computation-
ally too demanding for fine-grained prediction of large proteins. Several extensions
are currently under development, including the integration of these methods into
complete 3D structure predictors. While these systems require long training peri-
ods, once trained they can rapidly sift through large proteomic data sets.
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