
Self-calibrating Probability Forecasting

Vladimir Vovk
Computer Learning Research Centre

Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
vovk@ cs.rhul.ac.uk

Glenn Shafer
Rutgers School of Business
Newark and New Brunswick

180 University Avenue
Newark, NJ 07102, USA

gshafer@ andromeda.rutgers.edu

Ilia Nouretdinov

Computer Learning Research Centre
Department of Computer Science

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

ilia @cs.rhul.ac.uk

Abstract

In the problem of probability forecasting the learner’s goal is to output,
given a training set and a new object, a suitable probability measure on
the possible values of the new object’s label. An on-line algorithm for
probability forecasting is said to be well-calibrated if the probabilities
it outputs agree with the observed frequencies. We give a natural non-
asymptotic formalization of the notion of well-calibratedness, which we
then study under the assumption of randomness (the object/label pairs
are independent and identically distributed). It turns out that, although
no probability forecasting algorithm is automatically well-calibrated in
our sense, there exists a wide class of algorithms for “multiprobability
forecasting” (such algorithms are allowed to output a set, ideally very
narrow, of probability measures) which satisfy this property; we call the
algorithms in this class “Venn probability machines”. Our experimental
results demonstrate that a 1-Nearest Neighbor Venn probability machine
performs reasonably well on a standard benchmark data set, and one of
our theoretical results asserts that a simple Venn probability machine
asymptotically approaches the true conditional probabilities regardless,
and without knowledge, of the true probability measure generating the
examples.

1 Introduction

We are interested in the on-line version of the problem of probability forecasting: we ob-
serve pairs of objects and labels sequentially, and after observing thenth objectxn the
goal is to give a probability measurepn for its label; as soon aspn is output, the label
yn of xn is disclosed and can be used for computing future probability forecasts. A good



review of early work in this area is Dawid [1]. In this introductory section we will assume
that yn ∈ {0, 1}; we can then takepn to be a real number from the interval[0, 1] (the
probability thatyn = 1 givenxn); our exposition here will be very informal.

The standard view ( [1], pp. 213–216) is that the quality of probability forecasting systems
has two components: “reliability” and “resolution”. At the crudest level, reliability requires
that the forecasting system should not lie, and resolution requires that it should say some-
thing useful. To be slightly more precise, consider the firstn forecastspi and the actual
labelsyi.

The most basic test is to compare the overall average forecast probabilitypn :=
n−1

∑n
i=1 pi with the overall relative frequencyyn := n−1

∑n
i=1 yi of 1s amongyi.

If pn ≈ yn, the forecasts are “unbiased in the large”.

A more refined test would look at the subset ofi for which pi is close to a given valuep∗,
and compare the relative frequency ofyi = 1 in this subset, sayyn(p∗), with p∗. If

yn(p∗) ≈ p∗ for all p∗, (1)

the forecasts are “unbiased in the small”, “reliable”, “valid”, or “well-calibrated”; in later
sections, we will use “well-calibrated”, or just “calibrated”, as a technical term. Forecasting
systems that pass this test at least get the frequencies right; in this sense they do not lie.

It is easy to see that there are reliable forecasting systems that are virtually useless. For
example, the definition of reliability does not require that the forecasting system pay any
attention to the objectsxi. In another popular example, the labels follow the pattern

yi =
{

1 if i is odd
0 otherwise.

The forecastspi = 0.5 are reliable, at least asymptotically (0.5 is the right relative fre-
quency) but not as useful asp1 = 1, p2 = 0, . . . ; the “resolution” (which we do not define
here) of the latter forecasts is better.

In this paper we construct forecasting systems that are automatically reliable. To achieve
this, we allow our prediction algorithms to output sets of probability measuresPn instead
of single measurespn; typically the setsPn will be small (see§5).

This paper develops the approach of [2–4], which show that it is possible to produce valid,
asymptotically optimal, and practically useful p-values; the p-values can be then used for
region prediction. Disadvantages of p-values, however, are that their interpretation is less
direct than that of probabilities and that they are easy to confuse with probabilities; some
authors have even objected to any use of p-values (see, e.g., [5]). In this paper we use the
methodology developed in the previous papers to produce valid probabilities rather than
p-values.

All proofs are omitted and can be found in [6].

2 Probability forecasting and calibration

From this section we start rigorous exposition. LetP(Y) be the set of all probability
measures on a measurable spaceY. We use the following protocol in this paper:

MULTIPROBABILITY FORECASTING

Players: Reality, Forecaster

Protocol:



FORn = 1, 2, . . . :
Reality announcesxn ∈ X.
Forecaster announcesPn ⊆ P(Y).
Reality announcesyn ∈ Y.

In this protocol, Reality generatesexampleszn = (xn, yn) ∈ Z := X × Y consisting
of two parts,objectsxn and labelsyn. After seeing the objectxn Forecaster is required
to output a prediction for the labelyn. The usual probability forecasting protocol requires
that Forecaster output a probability measure; we relax this requirement by allowing him to
output a family of probability measures (and we are interested in the case where the families
Pn become smaller and smaller asn grows). It can be shown (we omit the proof and even
the precise statement) that it is impossible to achieve automatic well-calibratedness, in our
finitary sense, in the probability forecasting protocol.

In this paper we make the simplifying assumption that the label spaceY is finite; in many
informal explanations it will be assumed binary,Y = {0, 1}. To avoid unnecessary techni-
calities, we will also assume that the familiesPn chosen by Forecaster are finite and have
no more thanK elements; they will be represented by a list of lengthK (elements in the list
can repeat). Aprobability machineis a measurable strategy for Forecaster in our protocol,
where at each step he is required to output a sequence ofK probability measures.

The problem of calibration is usually treated in an asymptotic framework. Typical asymp-
totic results, however, do not say anything about finite data sequences; therefore, in this
paper we will only be interested in the non-asymptotic notion of calibration. All needed
formal definitions will be given, but space limitations prevent us from including detailed
explanations and examples, which can be found in [6].

Let us first limit the duration of the game, replacingn = 1, 2, . . . in the multiprobability
forecasting protocol byn = 1, . . . , N for a finite horizonN . It is clear that, regardless of
formalization, we cannot guarantee that miscalibration, in the sense of (1) being violated,
will never happen: for typical probability measures, everything can happen, perhaps with a
small probability. The idea of our definition is: a prediction algorithm is well-calibrated if
any evidence of miscalibration translates into evidence against the assumption of random-
ness. Therefore, we first need to define ways of testing calibration and randomness; this
will be done following [7].

A gameN -martingaleis a functionM on sequences of the formx1, p1, y1, . . . , xn, pn, yn,
wheren = 0, . . . , N , xi ∈ X, pi ∈ P(Y), andyi ∈ Y, that satisfies

M(x1, p1, y1, . . . , xn−1, pn−1, yn−1) =
∫

Y

M(x1, p1, y1, . . . , xn, pn, y)pn(dy)

for all x1, p1, y1, . . . , xn, pn, n = 1, . . . , N . A calibrationN -martingaleis a nonnegative
gameN -martingale that is invariant under permutations:

M(x1, p1, y1, . . . , xN , pN , yN ) = M(xπ(1), pπ(1), yπ(1), . . . , xπ(N), pπ(N), yπ(N))

for anyx1, p1, y1, . . . , xN , pN , yN and any permutationπ : {1, . . . , N} → {1, . . . , N}.
To cover the multiprobability forecasting protocol, we extend the domain of definition for
a calibrationN -martingaleM from sequences of the formx1, p1, y1, . . . , xn, pn, yn,
where p1, . . . , pn are single probability measures onY, to sequences of the form
x1, P1, y1, . . . , xn, Pn, yn, where P1, . . . , Pn are sets of probability measures onY,
by

M(x1, P1, y1, . . . , xn, Pn, yn) := inf
p1∈P1,...,pn∈Pn

M(x1, p1, y1, . . . , xn, pn, yn).



A QN -martingale,whereQ is a probability measure onZ, is a functionS on sequences of
the formx1, y1, . . . , xn, yn, wheren = 0, . . . , N , xi ∈ X, andyi ∈ Y, that satisfies

S(x1, y1, . . . , xn−1, yn−1) =
∫

Z

S(x1, y1, . . . , xn−1, yn−1, x, y)Q(dx, dy)

for all x1, y1, . . . , xn−1, yn−1, n = 1, . . . , N .

If a nonnegativeQN -martingaleS starts withS(¤) = 1 and ends withS(x1, y1, . . . , yN )
very large, then we may rejectQ as the probability measure generating individual examples
(xn, yn). This interpretation is supported by Doob’s inequality. Analogously, if a gameN -
martingaleM starts withM(¤) = 1 and ends withM(x1, P1, y1, . . . , yN ) very large, then
we may reject the hypothesis that eachPn contains the true probability measure foryn. If
M is a calibrationN -martingale, this event is interpreted as evidence of miscalibration.
(The restriction to calibrationN -martingales is motivated by the fact that (1) is invariant
under permutations).

We call a probability machineF N -calibrated if for any probability measureQ on Z
and any nonnegative calibrationN -martingaleM with M(¤) = 1, there exists aQN -
martingaleS with S(¤) = 1 such that

M(x1, F (x1), y1, . . . , xN , F (x1, y1, . . . , xN ), yN ) ≤ S(x1, y1, . . . , xN , yN )

for all x1, y1, . . . , xN , yN . We say thatF is finitarily calibrated if it is N -calibrated for
eachN .

3 Self-calibrating probability forecasting

Now we will describe a general algorithm for multiprobability forecasting. LetN be the
sets of all positive integer numbers. A sequence of measurable functionsAn : Zn → Nn,
n = 1, 2, . . . , is called ataxonomyif, for any n ∈ N, any permutationπ of {1, . . . , n}, any
(z1, . . . , zn) ∈ Zn, and any(α1, . . . , αn) ∈ Nn,

(α1, . . . , αn) = An(z1, . . . , zn) =⇒ (απ(1), . . . , απ(n)) = An(zπ(1), . . . , zπ(n)).

In other words,
An : (z1, . . . , zn) 7→ (α1, . . . , αn) (2)

is a taxonomy if everyαi is determined by the bag1 *z1, . . . , zn+ andzi. We let|B| stand
for the number of elements in a setB. TheVenn probability machine associated with(An)
is the probability machine which outputs the followingK = |Y| probability measurespy,
y ∈ Y, at thenth step: complement the new objectxn by the postulated labely; consider
the division of*z1, . . . , zn+, wherezn is understood (only for the purpose of this definition)
to be(xn, y), into groups (formally, bags) according to the values ofAn (i.e.,zi andzj are
assigned to the same group if and only ifαi = αj , where theαs are defined by (2)); find the
empirical distributionpy ∈ P(Y) of the labels in the groupG containing thenth example
zn = (xn, y):

py({y′}) :=
|{(x∗, y∗) ∈ G : y∗ = y′}|

|G| .

A Venn probability machine(VPM) is the Venn probability machine associated with some
taxonomy.

Theorem 1 Any Venn probability machine is finitarily calibrated.

1By “bag” we mean a collection of elements, not necessarily distinct. “Bag” and “multiset” are
synonymous, but we prefer the former term in order not to overload the prefix “multi”.



It is clear that VPM depends on the taxonomy only through the way it splits the examples
z1, . . . , zn into groups; therefore, we may specify only the latter when constructing specific
VPMs.

Remark The notion of VPM is a version of Transductive Confidence Machine (TCM)
introduced in [8] and [9], and Theorem 1 is a version of Theorem 1 in [2].

4 Discussion of the Venn probability machine

In this somewhat informal section we will discuss the intuitions behind VPM, considering
only the binary caseY = {0, 1} and considering the probability forecastspi to be elements
of [0, 1] rather thanP({0, 1}), as in§1. We start with the almost trivialBernoulli case,
where the objectsxi are absent,2 and our goal is to predict, at each stepn = 1, 2, . . . , the
new labelyn given the previous labelsy1, . . . , yn−1. The most naive probability forecast
is pn = k/(n − 1), wherek is the number of 1s among the firstn − 1 labels. (Often
“regularized” forms ofk/(n − 1), such as Laplace’s rule of succession(k + 1)/(n + 1),
are used.)

In the Bernoulli case there is only one natural VPM: the multiprobability forecast foryn is
{k/n, (k+1)/n}. Indeed, since there are no objectsxn, it is natural to take the one-element
taxonomyAn at each step, and this produces the VPMPn = {k/n, (k + 1)/n}. It is clear
that the diameter1/n of Pn for this VPM is the smallest achievable. (By thediameterof a
set we mean the supremum of distances between its points.)

Now let us consider the case wherexn are present. The probability forecastk/(n − 1)
for yn will usually be too crude, since the known populationz1, . . . , zn−1 may be very
heterogeneous. A reasonable statistical forecast would take into account only objectsxi

that are similar, in a suitable sense, toxn. A simple modification of the Bernoulli forecast
k/(n− 1) is as follows:

1. Split the available objectsx1, . . . , xn into a number of groups.

2. Outputk′/n′ as the predicted probability thatyn = 1, wheren′ is the number
of objects amongx1, . . . , xn−1 in the same group asxn andk′ is the number of
objects among thosen′ that are labeled as1.

At the first stage, a delicate balance has to be struck between two contradictory goals: the
groups should be as large as possible (to have a reasonable sample size for estimating prob-
abilities); the groups should be as homogeneous as possible. This problem is sometimes
referred to as the “reference class problem”; according to Kılınç [10], John Venn was the
first to formulate and analyze this problem with due philosophical depth.

The procedure offered in this paper is a simple modification of the standard procedure
described in the previous paragraph:

0. Consider the two possible completions of the known data

(z1, . . . , zn−1, xn) = ((x1, y1), . . . , (xn−1, yn−1), xn) :

in one (called the0-completion)xn is assigned label0, and in the other (called the
1-completion)xn is assigned label1.

1. In each completion, split all examplesz1, . . . , zn−1, (xn, y) into a number of
groups, so that the split does not depend on the order of examples (y= 0 for
the0-partition andy = 1 for the1-partition).

2Formally, this correspond in our protocol to the situation where|X| = 1, and soxn, although
nominally present, do not carry any information.



2. In each completion, outputk′/n′ as the predicted probability thatyn = 1, where
n′ is the number of examples amongz1, . . . , zn−1, (xn, y) in the same group as
(xn, y) andk′ is the number of examples among thosen′ that are labeled as1.

In this way, we will have not one but two predicted probabilities thatyn = 1; but in
practically interesting cases we can hope that these probabilities will be close to each other
(see the next section).

Venn’s reference class problem reappears in our procedure as the problem of avoiding over-
and underfitting. A taxonomy with too many groups means overfitting; it is punished by
the large diameter of the multiprobability forecast (importantly, this is visible, unlike the
standard approaches). Too few groups means underfitting (and poor resolution).

Important advantages of our procedure over the naive procedure are: our procedure is self-
calibrating; there exists an asymptotically optimal VPM (see§6); we can use labels in
splitting examples into groups (this will be used in the next section).

5 Experiments

In this section, we will report the results for a natural taxonomy applied to the well-known
USPS data set of hand-written digits; this taxonomy is inspired by the 1-Nearest Neighbor
algorithm. First we describe the taxonomy, and then the way in which we report the results
for the VPM associated with this taxonomy.

Since the data set is relatively small (9298 examples in total), we have to use a crude
taxonomy: two examples are assigned to the same group if their nearest neighbors have
the same label; therefore, the taxonomy consists of 10 groups. The distance between two
examples is defined as the Euclidean distance between their objects (which are16 × 16
matrices of pixels and represented as points inR256).

The algorithm processes thenth objectxn as follows. First it creates the10 × 10 matrix
A whose entryAi,j , i, j = 0, . . . , 9, is computed by assigningi to xn as label and finding
the fraction of examples labeledj among the examples in the bag*z1, . . . , zn−1, (xn, i)+
belonging to the same group as(xn, i). Thequality of a column of this matrix is its mini-
mum entry. Choose a column (called thebestcolumn) with the highest quality; let the best
column bejbest. Outputjbestas the prediction and output

[
min

i=0,...,9
Ai,jbest, max

i=0,...,9
Ai,jbest

]

as the interval for the probability that this prediction is correct. If the latter interval is[a, b],
the complementary interval[1−b, 1−a] is called theerror probability interval. In Figure 1
we show the following three curves: the cumulative error curveEn :=

∑n
i=1 erri, where

erri = 1 if an error (in the sensejbest 6= yi) is made at stepi anderri = 0 otherwise; the
cumulative lower error probability curveLn :=

∑n
i=1 li and thecumulative upper error

probability curveUn :=
∑n

i=1 ui, where[li, ui] is the error probability interval output by
the algorithm for the labelyi. The valuesEn, Ln andUn are plotted againstn. The plot
confirms that the error probability intervals are calibrated.

6 Universal Venn probability machine

The following result asserts the existence of a universal VPM. Such a VPM can be con-
structed quite easily using the histogram approach to probability estimation [11].
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Figure 1: On-line performance of the 1-Nearest Neighbor VPM on the USPS data set
(9298 hand-written digits, randomly permuted). The dashed line shows the cumulative
number of errorsEn and the solid ones the cumulative upper and lower error probability
curvesUn andLn. The mean errorEN/N is 0.0425 and the mean probability interval
(1/N)[LN , UN ] is [0.0407, 0.0419], whereN = 9298 is the size of the data set. This
figure is not significantly affected by statistical variation (due to the random choice of the
permutation of the data set).

Theorem 2 SupposeX is a Borel space. There exists a VPM such that, if the examples are
generated fromQ∞,

sup
p∈Pn

ρ(Q(· |xn), p) → 0 (n →∞)

in probability, whereρ is the variation distance,Q(· |xn) is a fixed version of the regular
conditional probabilities foryn givenxn, andPn are the multiprobabilities produced by
the VPM.

This theorem shows that not only all VPMs are reliable but some of them also have asymp-
totically optimal resolution. The version of this result for p-values was proved in [4].

7 Comparisons

In this section we briefly and informally compare this paper’s approach to standard ap-
proaches in machine learning.

Two most important approaches to analysis of machine-learning algorithms are Bayesian
learning theory and PAC theory (the recent mixture, the PAC-Bayesian theory, is part of
PAC theory in its assumptions). This paper is in a way intermediate between Bayesian
learning (no empirical justification for probabilities is required) and PAC learning (the goal
is to find or bound the true probability of error, not just to output calibrated probabilities).
An important difference of our approach from the PAC approach is that we are interested
in the conditional probabilities for the label given the new object, whereas PAC theory
(even in its “data-dependent” version, as in [12–14]) tries to estimate the unconditional
probability of error.
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