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Abstract

We present a novel connectionist model for acquiring the semantics of a
simple language through the behavioral experiences of a real robot. We
focus on the “compositionality” of semantics, a fundamental character-
istic of human language, which is the ability to understand the meaning
of a sentence as a combination of the meanings of words. We also pay
much attention to the “embodiment” of a robot, which means that the
robot should acquire semantics which matches its body, or sensory-motor
system. The essential claim is that an embodied compositional semantic
representation can be self-organized from generalized correspondences
between sentences and behavioral patterns. This claim is examined and
confirmed through simple experiments in which a robot generates corre-
sponding behaviors from unlearned sentences by analogy with the corre-
spondences between learned sentences and behaviors.

1 Introduction

Implementing language acquisition systems is one of the most difficult problems, since
not only the complexity of the syntactical structure, but also the diversity in the domain
of meaning make this problem complicated and intractable. In particular, how linguistic
meaning can be represented in the system is crucial, and this problem has been investigated
for many years.

In this paper, we introduce a connectionist model to acquire the semantics of language with
respect to the behavioral patterns of a real robot. An essential question is how embod-
ied compositional semantics can be acquired in the proposed connectionist model without
providing any representations of the meaning of a word or behavior routines a priori. By
“compositionality”, we refer to the fundamental human ability to understand a sentence
from (1) the meanings of its constituents, and (2) the way in which they are put together.
It is possible for a language acquisition system that acquires compositional semantics to
derive the meaning of an unknown sentence from the meanings of known sentences. Con-
sider the unknown sentence: “John likes birds.” It could be understood by learning these
three sentences: “John likes cats.”; “Mary likes birds.”; and “Mary likes cats.” That is to
say, generalization of meaning can be achieved through compositional semantics.

From the point of view of compositionality, the symbolic representation of word meaning
has much affinity with processing the linguistic meaning of sentences [4]. Following this
observation, various learning models have been proposed to acquire the embodied seman-



tics of language. For example, some models learn semantics in the form of correspondences
between sentences and non-linguistic objects, i.e., visual images [10] or the sensory-motor
patterns of a robot [7, 13].

In these works, the syntactic aspect of language was acquired through a pre-acquired lex-
icon. This means that the meanings of words (i.e., lexicon) is acquired independently of
the usages of words in sentences (i.e., syntax). Although this separated learning approach
seems to be plausible from the requirements of compositionality, it causes inevitable dif-
ficulties in representing the meaning of a sentence. A priori separation of lexicon and
syntax requires a pre-defined manner of combining word meanings into the meaning of a
sentence. In Iwahashi’s model, the class of a word is assumed to be given prior to learn-
ing its meaning because different acquisition algorithms are required for nouns and verbs
(c.f., [12]). Moreover, the meaning of a sentence is obtained by filling a pre-defined tem-
plate with meanings of words. Roy’s model does not require a priori knowledge of word
classes, but requires the strong assumption, that the meaning of a word can be assigned
to some pre-defined attributes of non-linguistic objects. This assumption is not realistic
in more complex cases, such as when the meaning of a word needs to be extracted from
non-linguistic spatio-temporal patterns, as in case of learning verbs.

In this paper, we discuss an essential mechanism for self-organizing embodied composi-
tional semantic representations, in which separate treatments of words and syntax are not
required. Our model implements compositional semantics by utilizing the generalization
capability of an RNN, where the meaning of each word cannot exist independently, but
emerges from the relations with others (c.f., reverse compositionality, [3]). In this situa-
tion, a sort of generalization can be expected, such that the meanings of novel sentences
can be inferred by analogy with learned ones.

The experiments were conducted using a real mobile robot with an arm and with various
sensors, including a vision system. A finite set of two-word sentences consisting of a verb
followed by a noun was considered. Our analysis will clarify what sorts of internal neural
structures should be self-organized for achieving compositional semantics grounded to a
robot’s behavioral experiences. Although our experimental design is limited, the current
study will suggest an essential mechanism for acquiring grounded compositional seman-
tics, with the minimal combinatorial structure of this finite language [2].

2 Task Design

The aim of our experimental task is to discuss an essential mechanism for self-organizing
compositional semantics based on the behavior of a robot. In the training phase, our robot
learns the relationships between sentences and the corresponding behavioral sensory-maotor
sequences of a robot in a supervised manner. It is then tested to generate behavioral se-
quences from a given sentence. We regard compositional semantics as being acquired if
appropriate behavioral sequences can be generated from unlearned sentences by analogy
with learned data.

Our mobile robot has three actuators, with two wheels and a joint on the arm; a colored
vision sensor; and two torque sensors, on the wheel and the arm (Figure 1a). The robot
operates in an environment where three colored objects (red, blue, and green) are placed
on the floor (Figure 1b). The positions of these objects can be varied so long as the robot
sees the red object on the left side of its field of view, the green object in the middle, and
the blue object on the right at the start of every trial of behavioral sequences. The robot
thus learns nine categories of behavioral patterns, consisting of pointing at, pushing, and
hitting each of the three objects, in a supervised manner. These categories are denoted as
POINT-R, POINT-B, POINT-G, PUSH-R, PUSH-B, PUSH-G, HIT-R, HIT-B, and HIT-G
(Figure 1c-e).

The robot also learns sentences which consist of one of 3 verbs (point, push, hit) fol-
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lowed by one of 6 nouns (red, left, blue, center, green, right). The meanings of
these 18 possible sentences are given in terms of fixed correspondences with the 9 behav-
ioral categories (Figure 2). For example, “point red” and “point left” correspond to
POINT-R, “point blue” and “point center” to POINT-B, and so on. In these corre-
spondences, “left,” “center,” and “right” have exactly the same meaning as “red,”
“blue,” and “green” respectively. These synonyms are introduced to observe how the
behavioral similarity affects the acquired linguistic semantic structure.

3 Proposed Model

Our model employs two RNNs with parametric bias nodes (RNNPBs) [15] in order to
implement a linguistic module and a behavioral module (Figure 3). The RNNPB, like the
conventional Jordan-type RNN [8], is a connectionist model to learn time sequences. The
linguistic module learns the above sentences represented as time sequences of words [1],
while the behavioral module learns the behavioral sensory-motor sequences of the robot.
To acquire the correspondences between the sentences and behavioral sequences, these two
modules are connected to each other by using the parametric bias binding method. Before
discussing this binding method in detail, we introduce the overall architecture of RNNPB.
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Figure 3: Our model is composed of two RNNs with parametric bias nodes (RNNPBSs),
one for a linguistic module and the other for a behavioral module. Both modules interact
with each other during the learning process via the parametric bias method introduced in
the text.

3.1 RNNPB

The RNNPB has the same neural architecture as the Jordan-type RNN except for the PB
nodes in the input layer (c.f., each module of Figure 3). Unlike the other input nodes, these
PB nodes take a specific constant vector throughout each time sequence, and are employed
to implement a mapping between fixed-length vectors and time sequences.

Like the conventional Jordan-type RNN, the RNNPB learns time sequences in a supervised
manner. The difference is that in the RNNPB, the vectors that encode the time sequences
are self-organized in PB nodes during the learning process. The common structural proper-
ties of all the training time sequences are acquired as connection weight values by using the



back-propagation through time (BPTT) algorithm, as used also in the conventional RNN
[8, 11]. Meanwhile, the specific properties of each individual time sequence are simultane-
ously encoded as PB vectors (c.f., [9]). As a result, the RNNPB self-organizes a mapping
between the PB vectors and the time sequences.

The learning algorithm for the PB vectors is a variant of the BPTT algorithm. For each of n
training time sequences of real-numbered vectors X, - - -, X,-1, the back-propagated errors
with respect to the PB nodes are accumulated for all time steps to update the PB vectors.
Formally, the update rule for the PB vector py, encoding the i-th training time sequence x;
is given as follows:
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In equation (1), the update of PB vector 62 py, is obtained from the average back-propagated
error with respect to a PB node errorp, (t) through all time steps fromt = 0 to |; — 1, where
li is the length of x;. In equation (2), this update is low-pass filtered to inhibit frequent rapid
changes in the PB vectors.

After successfully learning the time sequences, the RNNPB can generate a time sequence
x; from its corresponding PB vector py. The actual generation process of a time sequence
X; is implemented by iteratively utilizing the RNNPB with the corresponding PB vector
px., a fixed initial context vector, and input vectors for each time step. Depending on the
required functionality, both the external information (e.g., sensory information) and the
internal prediction (e.g., motor commands) are employed as input vectors.

Here, we introduce an abstracted operational notation for the RNNPB to facilitate a later
explanation of our proposed method of binding language and behavior. By using an opera-
tor RNNPB, the generation of x; from py is described as follows:

RNNPB(p,) — X, i=0,---,n—1. @)

Furthermore, the RNNPB can be used not only for sequence generation processes but also
for recognition processes. For a given sequence x;, the corresponding PB vector py, can
be obtained by using the update rules for the PB vectors (equations (1) to (3)), without
updating the connection weight values. This inverse operation for generation is regarded
as recognition, and is hence denoted as follows:

RNNPB'(x) — px, i=0,---,n-1 (5)

The other important characteristic nature of the RNNPB is that the relational structure
among the training time sequences can be acquired in the PB space through the learning
process. This generalization capability of RNNPB can be employed to generate and rec-
ognize unseen time sequences without any additional learning. For instance, by learning
several cyclic time sequences of different frequency, novel time sequences of intermediate
frequency can be generated [6].

3.2 Binding

In the proposed model, corresponding sentences and behavioral sequences are constrained
to have the same PB vectors in both modules. Under this condition, corresponding be-
havioral sequences can be generated naturally from sentences. When a sentence s and its
corresponding behavioral sequence b; have the same PB vector, we can obtain b; from s
as follows:

RNNPBg(RNNPB(s)) — by (6)



where RNNPB_ and RNNPBg are abstracted operators for the linguistic module and the
behavioral module, respectively.

The PB vector pg is obtained by recognizing the sentence 5. Because of the constraint
that corresponding sentences and behavioral sequences must have the same PB vectors,
Py is equal to ps. Therefore, we can obtain the corresponding behavioral sequence by by
utilizing the behavioral module with py, .

The binding constraint is implemented by introducing an interaction term into part of the
update rule for the PB vectors (equation (3)).

ps = pY¢+6ps + - (P - P29 ©)
Po = PRO+0pn +ye-(PAY - PR ®)

where y. and yg are positive coefficients that determine the strength of the binding. Equa-
tions (7) and (8) are the constrained update rules for the linguistic module and the behavior
module, respectively. Under these rules, the PB vectors of a corresponding sentence s and
behavioral sequence by attract each other. Actually, the corresponding PB vectors ps and
pp, Need not be completely equalized to learn a correspondence. The epsilon errors of the
PB vectors can be neglected because of the continuity of PB spaces.

3.3 Generalization of Correspondences

As noted above, our model enables a robot to understand a sentence by means of a gen-
erated behavior as if the meaning of the sentence were composed of the meanings of the
constituents. That is to say, the robot can generate appropriate behavioral sequences from
all sentences without learning all correspondences. To achieve this, an unlearned sentence
and its corresponding behavioral sequences must have the same PB vector. Nevertheless,
the PB binding method only equalizes the PB vectors for given corresponding sentences
and behavioral sequences (c.f., equation (7) and (8)).

Implicit binding, or in other words, inter-module generalization of correspondences, is
achieved by dynamic coordination between the PB binding method and the intra-module
generalization of each module. The local effect of the PB binding method spreads over
the whole PB space, because each individual PB vector depends on the others in order to
self-organize PB structures reflecting the relationships among training data. Thus, the PB
structures of both modules densely interact via the PB binding methods. Finally, both PB
structures converge into a common PB structure, and therefore, all corresponding sentences
and behavioral sequences then share the same PB vectors automatically.

4 Experiments

In the learning phase, the robot learned 14 of 18 correspondences between sentences and
behavioral patterns (c.f., Figure 2). It was then tested to generate behavioral sequences

from each of the remaining 4 sentences (“point green”, “point right”, “push red”,
and “push left”).

To enable a robot to learn correspondences robustly, five corresponding sentences and be-
havioral sequences were associated by using the PB binding method for each of the 14
training correspondences. Thus, the linguistic module learned 70 sentences with PB bind-
ing. Meanwhile, the behavioral module learned the behavioral sequences of the 9 cate-
gories, including 2 categories which had no corresponding sentences in the training set.
The behavioral module learned 10 different sensory-motor sequences for each behavioral
category. It therefore learned 70 behavioral sequences corresponding to the training sen-
tences with PB binding and the remaining 20 sequences independently. In addition, the
behavioral module learned the same 90 behavioral sequences without binding.

A sentence is represented as a time sequence of words, which starts with a fixed starting
symbol. Each word is locally represented, such that each input node of the module corre-



sponds to a specific word. A single input node takes a value of 1.0 while the others take
0.0 [1]. The linguistic module has 10 input nodes for each of 9 words and a starting sym-
bol. The module also has 6 parametric bias nodes, 4 context nodes, 50 hidden nodes, and
10 prediction output nodes. Thus, no a priori knowledge about the meanings of words is
pre-programmed.

A training behavioral sequence was created by sampling three sensory-motor vectors per
second during a trial of the robot’s human-guided behavior. For robust learning of behavior,
each training behavioral sequence was generated under a slightly different environment in
which object positions were varied. The variation was at most 20 percent of the distance
between the starting position of the robot and the original position of each object in every
direction (c.f., Figure 1b). Typical behavioral sequences are about 5 to 25 seconds long,
and therefore have about 15 to 75 sensory-motor vectors. A sensory-motor vector is a real-
numbered 26-dimensional vector consisting of 3 motor values (for 2 wheels and the arm), 2
values from torque sensors (of the wheels and the arm), and 21 values encoding the visual
image. The visual field is divided vertically into 7 regions, and each region is represented
by (1) the fraction of the region covered by the object, (2) the dominant hue of the object
in the region, and (3) the bottom border of the object in the region, which is proportional
to the distance of the object from the camera. The behavioral module had 26 input nodes
for sensory-motor input, 6 parametric bias nodes, 6 context nodes, 70 hidden nodes, and 6
output nodes for motor commands and partial prediction of the sensory image at the next
time step.

5 Resultsand Analysis

In this section, we analyze the results of the experiment presented in the previous section.
The analysis reveals that the inter-module generalization realized by the PB binding method
could fill an essential role in self-organizing the compositional semantics of the simple
language through the behavioral experiences of the robot. As mentioned in the previous
section, the training data for this experiment did not include all the correspondences. As
a result, although the behavioral module was trained with the behavioral sequences of all
behavioral categories, those in two of the categories, whose corresponding sentences were
not in the linguistic training set, could not be bound.

The most important result was that these dangling behavioral sequences could be bound
with appropriate sentences. The robot could properly recognize four unseen sentences, and
generate the corresponding behaviors. This means that both modules share the common
PB structure successfully.

Comparing the PB spaces of both modules shows that they indeed shared a common struc-
ture as a result of binding. The linguistic PB vectors are computed by recognizing all
the possible 18 sentences including 4 unseen ones (Figure 4a), and the behavioral PB
vectors are computed at the learning phase for all the corresponding 90 behavioral se-
quences in the training data (Figure 4b). The acquired correspondences between sen-
tences and behavioral sequences can be examined according to equation (6). In particu-
lar, the implicit binding of the four unlearned correspondences (“point green”«POINT-
G, “point right”<POINT-G, “push red”<PUSH-R, and “push left”<PUSH-R)
demonstrates acquisition of the underlying semantics, or the generalized correspondences.

The acquired common structure has two striking characteristics: (1) the combinatorial
structure originated from the linguistic module, and (2) the metric based on the behav-
ioral similarity originated from the behavioral module. The interaction between modules
enabled both PB spaces to simultaneously acquire both of these two structural properties.

We can find three congruent sub-structures for each verb, and six congruent sub-structures
for each noun in the linguistic PB space. This congruency represents the underlying syn-
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Figure 4: Plots of the bound linguistic module (a) and the bound behavioral module (b).
Both plots are projections of the PB spaces onto the same surface determined by the PCA
method. Here, the accumulated contribution rate is about 73%. Unlearned sentences and
their corresponding behavioral categories are underlined.

tax structure of training sentences. For example, it is possible to estimate the PB vector
of “point green” from the relationship among the PB vectors of “point blue”, “hit
blue” and “hit green.” This predictable geometric regularity could be acquired by inde-
pendent learning of the linguistic module. However it could not be acquired by independent
learning of the behavioral module because these behavioral sequences can not be decom-
posed into plausible primitives, unlike the sentences which can be broken down into words.

We can also see a metric reflecting the similarity of behavioral sequences not only in the
behavioral modules but also in the linguistic module. The PB vectors of sentences that
correspond to the same behavioral category take the similar values. For example, the two
sentences corresponding to POINT-R (“point red” and “point left”) are encoded in
similar PB vectors. Such a metric nature could not be observed in the independent learning
of the linguistic module, in which all nouns were plotted symmetrically in the PB space by
means of the syntactical constraints.

The above observation thus confirms that the embodied compositional semantics was self-
organized through the unification of both modules, which was implemented by the PB
binding method. We also made experiments with different test sentences, and confirmed
that similar results could be obtained.

6 Discussion and Summary

Our simple experiments showed that the minimal grounded compositional semantics of our
language can be acquired by generalizing the correspondences between sentences and the
behavioral sensory-motor sequences of a robot. Our experiments could not examine strong
systematicity [4], but could address the combinatorial characteristic nature of sentences.
That is to say, the robot could understand relatively simple sentences in a systematic way,
and could understand novel sentences. Therefore, our results can elucidate some important
issues about the compositional semantic representation.

We claim that the acquisition of word meaning and syntax can not be separated from the
standpoint of the symbol grounding problem [5]. The meanings of words depend on each
other to compose the meanings of sentences [16]. Consider the meaning of the word “red.”
The meaning of “red” must be something which combines with the meaning of “point”,
“push” or “hit” to form the grounded meanings of sentences. Therefore, a priori definition
of the meaning of “red” substantially affects the organization of the other parts of the
system, and often results in further pre-programming. This means that it is inevitably
difficult to explicitly extract the meaning of a word from the meaning of a sentence.



Our model avoids this difficulty by implementing the grounded meaning of a word implic-
itly in terms of the relationships among the meanings of sentences based on behavioral
experiences. Our model does not require any pre-programming of syntactic information,
such as symbolic representation of word meaning, a predefined combinatorial structure in
the semantic domain, or behavior routines. Instead, the essential structures accounting for
compositionality are fully self-organized in the iterative dynamics of the RNN, through the
structural interactions between language and behavior using the PB binding method. Thus,
the robot can understand “red” through its behavioral interactions in the designed tasks in
a bottom-up way [14]. A similar argument holds true for verbs. For example, the robot
understands “point” through pointing at red, blue, and green objects.

To the summary, the current study has shown the importance of generalization of the cor-
respondences between sentences and behavioral patterns in the acquisition of an embodied
language. In future studies, we plan to apply our model to larger language sets. In the cur-
rent experiment, the training set consists of a large fraction of the legal input space, when
compared with related works. Such a large training set is needed because our model has
no a priori knowledge of syntax and composition rules. However, we think that our model
requires relatively fewer fraction of sentences to learn a larger language set, for a given
degree of syntactic complexity.
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