Information Bottleneck for
Gaussian Variables

Gal Chechik* Amir Globerson* Naftali Tishby Yair Weiss
{ggal,gamir,tishby,yweiss} Qcs.huji.ac.il
School of Computer Science and Engineering and
The Interdisciplinary Center for Neural Computation
The Hebrew University of Jerusalem, 91904, Israel
* Both authors contributed equally

Abstract

The problem of extracting the relevant aspects of data was ad-
dressed through the information bottleneck (IB) method, by (soft)
clustering one variable while preserving information about another
- relevance - variable. An interesting question addressed in the
current work is the extension of these ideas to obtain continuous
representations that preserve relevant information, rather than dis-
crete clusters. We give a formal definition of the general continuous
IB problem and obtain an analytic solution for the optimal repre-
sentation for the important case of multivariate Gaussian variables.
The obtained optimal representation is a noisy linear projection to
eigenvectors of the normalized correlation matrix X, L which
is also the basis obtained in Canonical Correlation Analysis. How-
ever, in Gaussian 1B, the compression tradeoff parameter uniquely
determines the dimension, as well as the scale of each eigenvector.
This introduces a novel interpretation where solutions of different
ranks lie on a continuum parametrized by the compression level.
Our analysis also provides an analytic expression for the optimal
tradeoff - the information curve - in terms of the eigenvalue spec-
trum.

1 Introduction

Extracting relevant aspects of complex data is a fundamental task in machine learn-
ing and statistics. The problem is often that the data contains many structures,
which make it difficult to define which of them are relevant and which are not in an
unsupervised manner. For example, speech signals may be characterized by their
volume level, pitch, or content; pictures can be ranked by their luminosity level,
color saturation or importance with regard to some task.

This problem was principally addressed by the information bottleneck (IB) approach
[1]. Given the joint distribution of a “source” variable X and another “relevance”
variable Y, IB operates to compress X, while preserving information about Y. The
variable Y thus implicitly defines what is relevant in X and what isn’t. Formally,
this is cast as the following variational problem

r(rﬂn)ﬁ:EEI(X;T)—ﬁl(T;Y) (1)



where T represents the compression of X via the conditional distributions p(t|z),
while the information that 7' maintains on Y is captured by p(y|t). The positive
parameter § determines the tradeoff between compression and preserved relevant
information, as the Lagrange multiplier for the constrained optimization problem
ming, ) [(X;7T) — B(I(T;Y) — const).

The information bottleneck approach has been applied so far mainly to categorical
variables, with a discrete T that represents (soft) clusters of X. It has been proved
useful for a range of applications from documents clustering, to gene expression
analysis (see [2] for review and references). However, its general information theo-
retic formulation is not restricted, both in terms of the variables X and Y, as well
as in the compression variable T'. It can be naturally extended to nominal and con-
tinuous variables, as well as dimension reduction techniques rather than clustering.
This is the goal of the current paper.

The general treatment of IB for continuous T yields the same set of self-consistent
equations obtained already in [1]. But rather than solving them for the distributions
p(t|z), p(t) and p(y|t) using the generalized Blahut-Arimoto algorithm as proposed
there, one can turn them into two coupled eigenvector problems for the logarithmic
functional derivatives MOg(ﬁ(I‘t) and Mog’;(y't), respectively. Solving these equations,
in general, turns out to be a rather difficult challenge. As in many other cases,
however, the problem turns out to be analytically tractable when X and Y are
joint multivariate Gaussian variables, as shown in this paper.

The optimal compression in the Gaussian Information Bottleneck (GIB) is defined
in terms of the compression-relevance tradeoff, determined through the parameter
B. It turns out to be a noisy linear projection to a subspace whose dimension
is determined by the tradeoff parameter 5. The subspaces are spanned by the
basis vectors obtained in the well known Canonical Correlation Analysis (CCA)[3)
method, but the exact nature of the projection is determined in a unique way via
the tradeoff parameter 8. Specifically, as (8 increases, additional dimensions are
added to the projection variable T, through a series of critical points (structural
phase transitions), while at the same time the relative magnitude of each basis
vector is rescaled. This process continues until all the relevant information about
Y is captured in T. This demonstrates how the IB formalism provides a continuous
measure of model complexity in information theoretic terms.

The idea of maximization of relevant information was also taken in the Imax frame-
work [4, 5]. In that setting, there are two feed forward networks with inputs X,, X3
and output neurons Y,, ;. The output neuron Y, serves to define relevance to the
output of the neighboring network Y;. Formally, The goal is to tune the incoming
weights of both output neurons, such that their mutual information I(Y,;Y}) is
maximized. An important difference between Imaz and the IB setting, is that in
the Imaz setting, 1(Y,;Y},) is invariant to scaling and translation of the Y’s since
the compression achieved in the mapping X, — Y, is not modeled explicitly. In
contrast, the IB framework aims to characterize the dependence of the solution on
the explicit compression term I(T; X), which is a scale sensitive measure when the
transformation is noisy. This view of compressed representation 7' of the inputs X
is useful when dealing with neural systems that are stochastic in nature and limited
in their response amplitudes and are thus constrained to finite I(7T'; X).

2 Gaussian Information Bottleneck

We now formalize the problem of Information Bottleneck for Gaussian variables.
Let (X,Y) be two jointly Gaussian variables of dimensions n,,n, and denote by



Y4, 2y the covariance matrices of X,Y and by ¥, their cross-covariance matrix!.

The goal of GIB is to compress the variable X via a stochastic transformation into
another variable T' € R™=, while preserving information about Y. With Gaussian
X and Y, the optimal T is also jointly Gaussian with X and Y. The intuition is
that only second order correlations exist in the joint distribution p(X,Y’), so that
distributions of T" with higher order moments do not carry additional information.
This can be rigorously shown using an application of the entropy power inequality
as in [6], and will be published elsewhere. Note that we do not explicitly limit the
dimension of T', since we will show that the effective dimension is determined by the
value of 3. Since every two random variables X, T with jointly Gaussian distribution
can be presented as T' = AX + &, where £ ~ N(0,X¢) is another Gaussian that is
independent of X, we formalize the problem as the minimization

min £ = I(X;T) — pI(T;Y) (2)

A5
over the noisy linear transformations parametrized by the transformation A and
noise covariance X¢. T is normally distributed T ~ N(0, £;) with £, = AE:,;AT—&—Eg.

3 The optimal projection

A main result of this paper is the characterization of the optimal A,3¢ as a function

of g8

Theorem 3.1 The optimal projection T' = AX + £ for a given tradeoff parameter
B is given by X¢ = I, and
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where {vi vl ... 7vg;c} are left eigenvectors of EI‘yEgl sorted by their correspond-
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ing ascending eigenvalues A1, Aa,..., A, , B = T are critical B values, «; are
: 1-X)—1 : . :

coefficients defined by a; = %, i = vl-Tvai, 07 is an n, dimensional row

vector of zeros, and semicolons separate rows in the matriz A.

This theorem asserts that the optimal projection consists of eigenvectors of Zz|y§];1,
combined in an interesting manner: For 3 values that are smaller than the smallest
critical point (f, compression is more important than any information preservation
and the optimal solution is the degenerated one A = 0. As ( is increased, it
goes through a series of critical points 3¢, at each of which another eigenvector
of Ex‘yEgl is added to A. Even though the rank of A increases at each of these
transition points, it changes smoothly as a function of § since at the critical point
B¢ the coeflicient «; vanishes. Thus 3 parameterizes a “continuous rank” of the
projection.

To illustrate the form of the solution, we plot the landscape of the target function
L together with the solution in a simple problem where X € R? and Y € R. In
this case A has a single non-zero row, thus A can be thought of as a row vector

1For simplicity we assume that X, 3y are full rank, otherwise X,Y can be reduced to
the proper dimensionality.



Figure 1. £ as a function of all possi-
ble projections A, for A: R? — R, ob-
tained numerically from Eq. 4. Dark- .
red: low L values; light-yellow: large :;
L values. ¥, =[0.10.2], X, = I5. A. :

For 8 = 15, the optimal solution is the “!
degenerated solution A = 0. B. For TR
B = 100, the eigenvector of ¥, ;"
with a norm according to theorem 3.1
(superimposed) is optimal.

of length 2, that projects X to a scalar A : X — R, T € R. Figure 1 shows the
target function £ as a function of the projection A. In this example, A\; = 0.95,
thus 8§ = 20. Therefor, for 4 = 15 (figure 1A) the zero solution is optimal, but for
8 =100 > B¢ (figure 1B) the corresponding eigenvector is a feasible solution, and
the target function manifold contains two mirror minima. As § increases from 0 to
00, these two minima, starting as a single unified minimum at zero, split at 3¢, and
then diverge apart to oc.

We now turn to prove theorem 3.12. We start by rewriting £ using the formula

for the entropy of a d dimensional Gaussian variable h(X) = 3 log((2me)?|%,|),
where | - | denotes a determinant. Using the Schur complement formula to calculate

the covariance of the conditional variable T'|Y we have Yy = Xt — ZtyE?leyt =
AEwaT + 3¢, and the target function (up to a factor of 2) can be written as

L(A,Xe) = (1-08) log [AL, AT + E¢| — log |S¢| + Blog |[AZ, 1, AT +Z¢| . (4)

Although £ is a function of both the noise ¥ and the projection A4, it can be easily
shown that for every pair (A, X¢), there is another projection A =D~V A where
Ye = VDVT and L(A,I) = L(A,X¢) 3. This allows us to simplify the calculations
by replacing the noise covariance matrix ¢ with the identity matrix.

To identify the minimum of £ we now differentiate £ w.r.t. to the projection A
using the algebraic identity % log|ACAT| = (ACAT)~'2AC which holds for any
symmetric matrix C. Equating this derivative to zero and rearranging, we obtain
necessary conditions for an internal minimum of £

(B-=1)/8[(AZ,, AT + 14)(AS, AT + 1) ' A= A[S,, 5. '] . (5)
Equation 5 shows that the multiplication of ¥, 3 I by A must reside in the span
of the rows of A. This means that A should be spanned by up to d eigenvectors of
DI 1. 'We can therefore represent the projection A as a mixture A = WV where
the rows of V' are left normalized eigenvectors of ¥, X Land W is a mixing matrix
that weights these eigenvectors. In the remainder of this section we characterize
the nature of the mixing matrix W.

Lemma 3.2 The optimal mizing matric W s a diagonal matriz of the form

BA-M)—1 ¢ BA=Ak) =1

W =di o”,...,0"
ag )\lrl Vi, ) Aka Vi ) ’ (6)

*Further details of the proofs can be found in a technical report [7].
3 Although this theorem holds only for full rank 3¢, it does not limit the generality of the
discussion since low rank matrices yield infinite values of £ and are therefore suboptimal.



where {v{,...,vLI} and {\1,..., g} are k < n, eigenvectors and eigenvalues of
Sy S5t with G5, 35 < B.

Proof: We write VZIME;l = DV where D is a diagonal matrix whose elements

are the corresponding eigenvalues, and denote by R the diagonal matrix whose i'"

element is r; = viTExvi. When k& = n,, we substitute A = WV into equation 5,
and use the fact that W is full rank to obtain

WTW = [3(I — D) - I|(DR)™* . (7)

While this does not uniquely characterize W, we note that if we substitute A into
the target function in equation 4, and use properties of the eigenvalues, we have

L=(1-8)Y tog (IWTI[2rs + 1) + 83 log ([[wT]2r:A; + 1) (8)

=1 =1

where ||[w7||? is the i'" element of the diagonal of WX W. This shows that £ depends
only on the norm of the columns of W, and all matrices W that satisfy (7) yield
the same target function. We can therefore choose to take W to be the diagonal
matrix which is the square root of (7)

W =+/[8( - D) - DI(DR)~? 9)

To prove the case of k < n,, consider a matrix W that is a k x k matrix padded with
zeros, thus it mixes only the first k eigenvectors. In this case, calculation similar to
that above gives the solution A which has n, — k zero rows. To complete the proof,
it remains to be shown that the above solution capture all extrema points. This
point is detailed in [7] due to space considerations. [

We have thus characterized the set of all minima of £, and turn to identify which
of them achieve the global minima.

Corollary 3.3 The global minimum of L is obtained with all \; satisfying 8 > B¢

Proof: Substituting the optimal W of equation 9 into equation 8 yields £ =
Zle(ﬁ — 1)log A; + log(1 — X\;) 4+ f(8). Since 0 < A < 1 and 8 > 1, L is
minimized by taking all the eigenvalues that satisfy g > ﬁ [l

Taken together, these observations prove that for a given value of 3, the optimal
projection is obtained by taking all the eigenvectors whose eigenvalues \; satisfy
8> 1%&, and setting their norm according to A = WV. This completes the proof
of theorem 3.1.

4 The GIB Information Curve

The information bottleneck is targeted at characterizing the tradeoff between in-
formation preservation (accuracy of relevant predictions) and compression. Inter-
estingly, much of the structure of the problem is reflected in the information curve,
namely the mazimal value of relevant preserved information (accuracy), I(T;Y),
as a function of the complexity of the representation of X, measured by I(T; X).
This curve is related to the rate-distortion function in lossy source coding, as well
as to the achievability limit in channel coding with side-information [8]. It is shown
to be concave in general [9], but its precise functional form depends on the joint



1 Figure 2. GIB information curve obtained with
four eigenvalues A\; = 0.1,0.5,0.7,0.9. The in-
formation at the critical points are designated
by circles. For comparison, information curves
calculated with smaller number of eigenvec-
tors are also depicted (all curves calculated for
(B < 1000). The slope of the curve at each point
is the corresponding $~!. The tangent at zero,
with slope 87! =1 — Ay, is super imposed on
20 25 the information curve.

I(T;Y)/ Zl Iog()\l)

10 15
I(T:X)

distribution and can reveal properties of the hidden structure of the variables. An-
alytic forms for the information curve are known only for very special cases, such as
Bernoulli variables and some intriguing self-similar distributions. The analytic char-
acterization of the Gaussian IB problem allows us to obtain a closed form expression
for the information curve in terms of the relevant eigenvalues.

To this end, we substitute the optimal projection A(fS) into I(T; X) and I(T;Y)
and isolate I3(T;Y) as a function of I3(T; X)

ny s B 21(Tix) 2L
Ig(T;Y) = I5(T; X) — - log [Ja=x)7 +e 7 J]A (10)
=1 =1

where the products are over the first n; eigenvalues, since these obey the critical
condition, with ¢,, < I(T;X) < ¢py41 and ¢, = 2 57 log )‘)\ﬂ%

The GIB curve, illustrated in Figure 2, is continuous and smooth, but is built of
several of segments, since as I(T; X) increases additional eigenvectors are used in
the projection. The derivative of the curve is given by 37!, which can be easily
shown to be continuous and decreasing, yielding that the GIB information curve is
concave everywhere. At each value of I(T; X) the curve is therefore bounded by a
tangent with a slope 371 (I(T; X)). Generally in IB, the data processing inequality
yields an upper bound on the slope at the origin, 371(0) < 1, in GIB we obtain a
tighter bound: 371(0) < 1—A;. The asymptotic slope of the curve is always zero, as
B — o0, reflecting the law of diminishing return: adding more bits to the description
of X does not provide more accuracy about 7. This interesting relation between
the spectral properties of the covariance matrices raises interesting questions for
special cases where more can be said about this spectrum, such as for patterns in
neural-network learning problems.

5 Relation To Other Works

5.1 Canonical Correlation Analysis and Imax

The GIB projection derived above uses weighted eigenvectors of the matrix
Ex‘yEgl =1, — ZIngleyxﬁ)gl. The same eigenvectors are also used in Canonical
correlations Analysis (CCA) [3], a statistical method that finds linear relations be-
tween two variables. CCA aims to find sets of basis vectors for the two variables that
maximize the correlation coefficient between the projections of the variables on the
basis vectors. The CCA bases are the eigenvectors of the matrices E;lZyIZglEmy
and E;lZzyE; 121”, and the square roots of their corresponding eigenvalues are
termed canonical correlation coefficients. CCA was also shown to be a special case
of continuous Imax [4, 5].



Although GIB and CCA involve the spectral analysis of the same matrices, they have
some inherent differences. First of all, GIB characterizes not only the eigenvectors
but also their norm, in a way that that depends on the trade-off parameter (. Since
CCA depends on the correlation coefficient between the compressed (projected)
versions of X and Y, which is a normalized measure of correlation, it is invariant
to a rescaling of the projection vectors. In contrast, for any value of 3, GIB will
choose one particular rescaling given by equation (4).

While CCA is symmetric (in the sense that both X and Y are projected), IB is non
symmetric and only the X variable is compressed. It is therefore interesting that
both GIB and CCA use the same eigenvectors for the projection of X.

5.2 Multiterminal information theory

The Information Bottleneck formalism was recently shown [9] to be closely related
to the problem of source coding with side information [8]. In the latter, two discrete
variables X,Y are encoded separately at rates R, Ry, and the aim is to use them
to perfectly reconstruct Y. The bounds on the achievable rates in this case were
found in [8] and can be obtained from the IB information curve.

When considering continuous variables, lossless compression at finite rates is no
longer possible. Thus, mutual information for continuous variables is no longer
interpretable in terms of encoding bits, but rather serves as an optimal measure of
information between variables. The IB formalism, although coinciding with coding
theorems in the discrete case, is more general in the sense that it reflects the tradeoff
between compression and information preservation, and is not concerned with exact
reconstruction. Such reconstruction can be considered by introducing distortion
measures as in [6] but is not relevant for the question of finding representations
which capture the information between the variables.

6 Discussion

We applied the information bottleneck method to continuous jointly Gaussian vari-
ables X and Y, with a continuous representation of the compressed variable T'. We
derived an analytic optimal solution as well as a general algorithm for this problem
(GIB) which is based solely on the spectral properties of the covariance matrices
in the problem. The solution for GIB, characterized in terms of the trade-off pa-
rameter (3, between compression and preserved relevant information, consists of
eigenvectors of the matrix El‘yEgl, continuously adding up as weaker compression
and more complex models are allowed. We provide an analytic characterization
of the information curve, which relates the spectrum to relevant information in
an intriguing manner. Besides its clean analytic structure, GIB offers a new way
for analyzing empirical multivariate data when only its correlation matrices can be
estimated. In thus extends and provides new information theoretic insight to the
classical Canonical Correlation Analysis method.

The IB optima are known to obey three self consistent equations, that can be
used in an iterative algorithm guaranteed to converge to a local optimum [1]. In
GIB, these iterations over the conditional distributions p(t|z), p(t) and p(y|t) can
be transformed into iterations over the projection parameter A. In this case, the
iterative IB algorithm turns into repeated projections on the matrix 3., 3 L as
used in power methods for eigenvector calculation. The parameter S determines
the scaling of the vectors, such that some of the eigenvectors decay to zero, while
the others converge to their value defined in Theorem 3.1.



When handling real world data, the relevance variable Y often contains mul-
tiple structures that are correlated to X, although many of them are actually
irrelevant. The information bottleneck with side information (IBSI) [10] alle-
viates this problem using side information in the form of an irrelevance vari-
able Y~ about which information is removed. IBSI thus aims to minimize
L=1(X;T)—B(I(T;Y+) —~I(T;Y~)). This functional can be analyzed in the
case of Gaussian variables (GIBSI: Gaussian IB with side information), in a similar
way to the analysis of GIB presented above. This results in a generalized eigenvalue
problem involving the covariance matrices 3, ,+ and X, -. The detailed solution
of this problem as a function of the tradeoff parameters remains to be investigated.

For categorical variables, the IB framework can be shown to be closely related to
maximum-likelihood in a latent variable model [11]. It would be interesting to
see whether the GIB-CCA equivalence can be extended and give a more general
understanding of the relation between IB and statistical latent variable models.

The extension of IB to continuous variables reveals a common principle behind reg-
ularized unsupervised learning methods ranging from clustering to CCA. It remains
an interesting challenge to obtain practical algorithms in the IB framework for di-
mension reduction (continuous 7') without the Gaussian assumption, for example
by kernelizing [12] or adding non linearities to the projections (as in [13]).
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