
Laplace Propagation

Alex J. Smola, S.V.N. Vishwanathan
Machine Learning Group

ANU and National ICT Australia
Canberra, ACT, 0200

{smola, vishy}@axiom.anu.edu.au

Eleazar Eskin
Department of Computer Science

Hebrew University Jerusalem
Jerusalem, Israel, 91904
eeskin@cs.columbia.edu

Abstract

We present a novel method for approximate inference in Bayesian mod-
els and regularized risk functionals. It is based on the propagation of
mean and variance derived from the Laplace approximation of condi-
tional probabilities in factorizing distributions, much akin to Minka’s
Expectation Propagation. In the jointly normal case, it coincides with
the latter and belief propagation, whereas in the general case, it provides
an optimization strategy containing Support Vector chunking, the Bayes
Committee Machine, and Gaussian Process chunking as special cases.

1 Introduction

Inference via Bayesian estimation can lead to optimization problems over rather large data
sets. Exact computation in these cases is often computationally intractable, which has led
to many approximation algorithms, such as variational approximation [5], or loopy belief
propagation. However, most of these methods still rely on the propagation of theexact
probabilities (upstream and downstream evidence in the case of belief propagation), rather
than an approximation. This approach becomes costly if the random variables are real
valued or if the graphical model contains large cliques.

To fill this gap, methods such as Expectation Propagation (EP) [6] have been proposed,
with explicit modifications to deal with larger cliques and real-valued variables. EP works
by propagating the sufficient statistics of an exponential family, that is, mean and variance
for the normal distribution, between various factors of the posterior. This is an attractive
choice only if we are able to compute the required quantities explicitly (this means that we
need to solve an integral in closed form).

Furthermore computation of the mode of the posterior (MAP approximation) is a legitimate
task in its own right — Support Vector Machines (SVM) fall into this category. In the
following we develop a cheap version of EP which requires only the Laplace approximation
in each step and show how this can be applied to SVM and Gaussian Processes.

Outline of the Paper We describe the basic ideas of LP in Section 2, show how it applies
to Gaussian Processes (in particular the Bayes Committee Machine of [9]) in Section 3,
prove that SVM chunking is a special case of LP in Section 4, and finally demonstrate in
experiments the feasibility of LP (Section 5).

2 Laplace Propagation

Let X be a set of observations and denote byθ a parameter we would like to infer by
studyingp(θ|X). This goal typically involves computing expectationsEp(θ|X)[θ], which
can only rarely be computed exactly. Hence we approximate

Ep(θ|X)[θ] ≈ argmaxθ − log p(θ|X) =: θ̂ (1)

Varp(θ|X)[θ] ≈ ∂2
θ [− log p(θ|X)]|θ=θ̂ (2)

This is commonly referred to as the Laplace-approximation. It is exact for normal distri-
butions and works best ifθ is strongly concentrated around its mean. Solving forθ̂ can
be costly. However, ifp(θ|X) has special structure, such as being the product of several
simple terms, possibly each of them dependent only on a small number of variables at a
time, computational savings can be gained. In the following we present an algorithm to
take advantage of this structure by breaking up (1) into smaller pieces and optimizing over
them separately.

2.1 Approximate Inference

For the sake of simplicity in notation we drop the explicit dependency ofθ onX and as in
[6] we assume that

p(θ) =
N∏

i=1

ti(θ). (3)

Our strategy relies on the assumption that if we succeed in finding good approximations
of each of the termsti(θ) by t̃i(θ) we will obtain an approximate maximizer̃θ of p(θ)
by maximizingp̃(θ) :=

∏
i t̃i(θ). Key is a good approximation of each of theti at the

maximum ofp(θ). This is ensured by maximizing

p̃i(θ) := ti(θ)
N∏

j=1,j 6=i

t̃i(θ). (4)

and subsequent use of the Laplace approximation ofti(θ) at θ̃i := argmaxθ p̃i(θ) as the
new estimatẽti(θ). This process is repeated until convergence. The following lemma
shows that this strategy is valid:

Lemma 1 (Fixed Point of Laplace Propagation)For all second-order fixed points the
following holds: θ∗ is a fixed point of Laplace propagation if and only if it is a local
optimum ofp(θ).

Proof Assume thatθ∗ is a fixed point of the above algorithm. Then the first order opti-
mality conditions require∂θ log p̃i(θ∗) = 0 for all i and the Laplace approximation yields
∂θ log t̃i(θ∗) = ∂θ log ti(θ∗) and∂2

θ log t̃i(θ∗) = ∂2
θ log ti(θ∗). Consequently, up to second

order, the derivatives of̃p, p̃i, andp agree atθ∗, which implies thatθ∗ is a local optimum.

Next assume thatθ∗ is locally optimal. Then again,∂θ log p̃i(θ∗) have to vanish, since the
Laplace approximation is exact up to second order. This means that also allt̃i will have an
optimum atθ̃∗, which means thatθ∗ is a fixed point.

The next step is to establish methods for updating the approximationst̃i of ti. One option
is to perform such updates sequentially, thereby improving only onet̃i at a time. This is
advantageous if we can process only one approximation at a time. For parallel processing,
however, we will perform several operations at a time, that is, recompute severalt̃i(θ)
and merge the new approximations subsequently. We will see how the BCM is a one-step
approximation of LP in the parallel case, whereas SV chunking is an exact implementation
of LP in the sequential case.

2.2 Message Passing

Message passing [7] has been widely successful for inference in graphical models. Assume
that we can splitθ into a (not necessarily disjoint) set of coordinates, sayθC1 , . . . , θCN

,
such that

p(θ) =
N∏

i=1

tN (θCi
). (5)

Then the goal of computing a Laplace approximation ofp̃i reduces to computing a Laplace
approximation for the subset of variablesθCi

, since these are the only coordinatesti de-
pends on.

Note that an update inθCi
means that only terms sharing vari-

ables withθCi are affected. For directed graphical models, these
are the conditional probabilities governing the parents and chil-
dren ofθCi . Hence, to carry out calculations we only need to
consider local information regarding̃ti(θCi).

76540123θ2

����
��

76540123θ1

��?
??

?

76540123θ3

��?
??

?
����

�� 76540123θ5
76540123θ4

In the example aboveθ3 depends on(θ1, θ2) and(θ4, θ5) are conditionally independent of
θ1 andθ2, givenθ3. Consequently, we may writep(θ) as

p(θ) = p(θ1)p(θ2)p(θ3|θ1, θ2)p(θ4|θ3)p(θ5|θ3). (6)

To find the Laplace approximation corresponding to the terms involvingθ3 we only need
to considerp(θ3|θ1, θ2) itself and its neighbors “upstream” and “downstream” ofθ3 con-
tainingθ1, θ2, θ3 in their functional form.

This means that LP can be used as a drop-in replacement of exact inference in message
passing algorithms. The main difference being, that now we are propagating mean and vari-
ance from the Laplace approximation rather than true probabilities (as in message passing)
or true means and variances (as in expectation propagation).

3 Bayes Committee Machine

In this section we show that the Bayes Committee Machine (BCM) [9] corresponds to one
step of LP in conjunction with a particular initialization, namely constantt̃i. As a result,
we extend BCM into an iterative method for improved precision of the estimates.

3.1 The Basic Idea

Let us assume that we are given a set
of sets of observations, say,Z1, . . . , ZN ,
which are conditionally independent of
each other, given a parameterθ, as de-
picted in the figure on the right.

?>=<89:;θ

uujjjjjjjjjjjjjjjj

zzvvvvvvv

$$III
III

II

GFED@ABCZ1
GFED@ABCZ2

. . . GFED@ABCZN

Repeated application of Bayes rule allows us to rewrite the conditional densityp(θ|Z) as

p(θ|Z) ∝ p(Z|θ)p(θ) = p(θ)
N∏

i=1

p(Zi|θ) ∝ p1−N (θ)
N∏

i=1

p(θ|Zi). (7)

Finally, Tresp and coworkers [9] find Laplace approximations forp(θ|Zi) ∝ p(Zi|θ)p(θ)
with respect toθ. These results are then combined via (7) to come up with an overall
estimate ofp(θ|X, Y).

3.2 Rewriting The BCM

The repeated invocation of Bayes rule seems wasteful, yet it was necessary in the context
of the BCM formulation to explain how estimates from subsets could be combined in a
committee like fashion. To show the equivalence of BCM with one step of LP recall the
third term of (7). We have

p(θ|Z) = c · p(θ)︸ ︷︷ ︸
:=t0(θ)

N∏
i=1

p(Zi|θ)︸ ︷︷ ︸
:=ti(θ)

, (8)

wherec is a suitable normalizing constant. In Gaussian processes, we generally assume
thatp(θ) is normal, hencet0(θ) is quadratic. This allows us to state the LP algorithm to
find the mode and curvature ofp(θ|Z):

Algorithm 1 Iterated Bayes Committee Machine

Initialize t̃0 ← cp(θ) andt̃i(θ)← const.
repeat

Compute new approximations̃ti(θ) in parallel by finding Laplace approximations to
p̃i, as defined in (4). Sincet0 is normal,̃t0(θ) = t0(θ). For i 6= 0 we obtain

p̃i = ti(θ)
N∏

j=0,j 6=i

t̃i(θ) = p(θ)p(Zi|θ)
N∏

j=1,j 6=i

t̃i(θ). (9)

until Convergence
Returnargmaxθ t0(θ)

∏N
i=1 t̃i(θ).

Note that in the first iteration (9) can be written asp̃i ∝ p(θ)p(Zi|θ), since all remaining
termst̃i are constant. This means that after the first updatet̃i is identical to the estimates
obtained from the BCM.

Whereas the BCM stops at this point, we have the liberty to continue the approximation and
also the liberty to choose whether we use a parallel or a sequential update regime, depend-
ing on the number of processing units available. As a side-effect, we obtain a simplified
proof of the following:

Theorem 2 (Exact BCM [9]) For normal distributions the BCM is exact, that is, the Iter-
ated BCM converges in one step.
Proof For normal distributions all̃ti are exact, hencep(θ) =

∏
i

ti(θ) =
∏

i

t̃i(θ) = p̃(θ),
which shows that̃p = p.

Note that [9] formulates the problem as one of classification or regression, that isZ =
(X, Y), where the labelsY are conditionally independent, givenX and the parameterθ.
This, however, does not affect the validity of our reasoning.

4 Support Vector Machines

The optimization goals in Support Vector Machines (SVM) are very similar to those in
Gaussian Processes: essentially the negative log posterior− log p(θ|Z) corresponds to the
objective function of the SV optimization problem.

This gives hope that LP can be adapted to SVM. In the following we show that SVM
chunking [4] and parallel SVM training [2] can be found to be special cases of LP. Taking
logarithms of (3) and definingπi(θ) := − log ti(θ) (andπ̃(θ) := − log t̃i(θ) analogously)
we obtain the following formulation of LP in log-space.

Algorithm 2 Logarithmic Version of Laplace Propagation

Initialize π̃i(θ)
repeat

Choose indexi ∈ {1, . . . , N}

Minimize πi(θ) +
N∑

j=1,i6=j

π̃j(θ) and replacẽπi(θ) by a Taylor approximation at the

minimumθi of the above expression.
until All θi agree

4.1 Chunking

To show that SV chunking is equivalent to LP in logspace, we briefly review the basic ideas
of chunking. The standard SVM optimization problem is

minimize
θ,b

π(θ, b) :=
1
2
‖θ‖2 + C

m∑
i=1

c(xi, yi, f(xi))

subject to f(xi) = 〈θ, Φ(xi)〉+ b

(10)

Here Φ(x) is the map into feature space such thatk(x, x′) = 〈Φ(x),Φ(x′)〉 and
c(x, y, f(x)) is a loss function penalizing the deviation between the estimatef(x) and
the observationy. We typically assume thatc is convex. For the rest of the deviation we let
c(x, y, f(x)) = max(0, 1− yf(x)) (the analysis still holds in the general case, however it
becomes considerably more tedious). The dual of (10) becomes

minimize
α

1
2

m∑
i,j=1

αiαjyiyjKijk(xi, xj)−
m∑

i=1

αi s.t.
m∑

i=1

yiαi = 0 andαi ∈ [0, C] (11)

The basic idea of chunking is to optimize only over subsets of the vectorα at a time.

Denote bySw the set of variables we are using in the current optimization step, letαw be the
corresponding vector, and byαf the variables which remain unchanged. Likewise denote

by yw, yf the corresponding parts ofy, and letH =
[

Hww Hwf

Hfw Hff

]
be the quadratic

matrix of (11), again split into terms depending onαw andαf respectively. Then (11),
restricted toαw can be written as [4]

minimize
αw

1
2
α>

wHwwαw+α>
f Hfwαw−

∑
i∈Sw

αi s.t. y>wαw+y>f αf = 0, αi ∈ [0, C] (12)

4.2 Equivalence to LP

We now show that the correction terms arising from chunking are the same as those arising
from LP. Denote byS1, . . . , SN a partition of{1, . . . m} and define

π0(θ, b) :=
1
2
‖θ‖2 andπi(θ, b) := C

∑
j∈Si

c(xj , yj , f(xj)). (13)

Thenπ̃0 = π0, sinceπ0 is purely quadratic, regardless of where we expandπ0. As for πi

(with i 6= 0) we have

π̃i =
∑
j∈Si

yjβj〈Φ(xj), θ〉+
∑
j∈Si

yjβjb = 〈θi, θ〉+ bib (14)

whereβj ∈ Cc′(xj , yj , f(xj)), θi :=
∑

j∈Si
yjβjΦ(xj), andbi :=

∑
j∈Si

yjβj .1 In this
case minimization overπi(θ) +

∑
j 6=i π̃j(θ) amounts to minimizing

1
2
‖θ‖2 + C

∑
j∈Si

c(xj , yj , f(xj)) + C
∑
j /∈Si

[〈θj , θ〉+ bjb] s.t.f(xj) = 〈θ, Φ(xj)〉+ b.

Skipping technical details, the dual optimization problem is given by

minimize
α

1
2

∑
j,l∈Si

αjαlyjylk(xj , kl)−
∑
j∈Si

αj −
∑

j∈Si,l 6∈Si

αjβlyjylk(xj , kl)

subject to αj ∈ [0, C] and
∑

j∈Si
yjαj −

∑
j 6∈Si

yjβj = 0.
(15)

The latter is identical to (12), the optimization problem arising from chunking, provided
that we perform the substitutionαj = −βj for all j 6∈ Si.

To show this last step, note that at optimality null has to be an element of the subdifferential
of πi(θ) with respect toθ, b. Taking derivatives ofπi +

∑
j 6=i π̃i implies

θ ∈ −C
∑
j∈Si

c′(xj , yj , f(xj))− C
∑
j 6=i

θj . (16)

Matching up terms in the expansion ofθ we immediately obtainβj = −αj .

Finally, to start the approximation scheme we need to consider a proper initialization ofπ̃i.
In analogy to the BCM setting we usẽπi = 0, which leads precisely to the SVM chunking
method, where one optimizes over one subset at a time (denoted bySi), while the other
sets are fixed, taking only their linear contribution into account.

LP does not require that all the updates oft̃i (or π̃i) be carried out sequentially. Instead, we
can also consider parallel approximations similar to [2]. There the optimization problem is
split into several small parts and each of them is solved independently. Subsequently the
estimates are combined by averaging.

This is equivalent to one-step parallel LP: with the initializationπ̃i = 0 for all i 6= 0
and π̃0 = π0 = 1

2‖θ‖
2 we minimizeπi +

∑
j 6=i π̃j in parallel. This is equivalent to

solving the SV optimization problem on the corresponding subsetSi (as we saw in the
previous section). Hence, the linear termsθi, bi arising from the approximatioñπi(θ, b) =
C〈θi, θ〉+ Cbib lead to the overall approximation

π̃(θ, b) =
∑

i

π̃i(θ, b) =
1
2
‖θ‖2 +

∑
i

〈θi, θ〉, (17)

with the joint minimizer being the average of the individual solutions.

5 Experiments

To test our ideas we performed a set of experiments with the widely available Web and
Adult datasets from the UCI repository [1]. All experiments were performed on a 2.4 MHz
Intel Xeon machine with 1 GB RAM using MATLAB R13. We used a RBF kernel with
σ2 = 10 [8], to obtain comparable results.

We first tested the performance of Gaussian process training with Laplace propogation
using a logistic loss function. The data was partitioned into chunks of roughly 500 samples
each and the maximum of columns in the low rank approximation [3] was set to 750.

1Note that we had to replace the equality with set inclusion due to the fact thatc is not everywhere
differentiable, hence we used sub-differentials instead.

We summarize the performance of our algorithm in Table 1.TFactor refers to the time
(in seconds) for computing the low rank factorization whileTTrain denotes the training
time for the Gaussian process. We empirically observed that on all datasets the algorithm
converges in less than 3 iterations using serial updates and in less than 6 iterations using
parallel updates.

Dataset TFactor TSerial TParallel Dataset TFactor TSerial TParallel

Adult1 16.38 25.72 53.90 Web1 20.33 34.33 93.47
Adult2 20.07 33.02 75.76 Web2 36.27 67.65 88.37
Adult3 24.41 47.05 106.88 Web3 37.09 92.36 212.04
Adult4 36.29 75.71 202.88 Web4 69.9 168.88 251.92
Adult5 56.82 97.57 169.79 Web5 68.15 225.13 249.15
Adult6 89.78 232.45 348.10 Web6 129.86 261.23 663.07
Adult7 119.39 293.45 559.23 Web7 213.54 483.52 838.36

Table 1: Gaussian process training with serial and parallel Laplace propogation.

We conducted another set of experiments to test the speedups obtained byseedingthe
SMO with values ofα obtained by performing one iteration of Laplace propogation on the
dataset. As before we used a RBF kernel withσ2 = 10. We partitioned the Adult1 and
Web1 datasets into 5 chunks each while the Adult4 and Web4 datasets were partitioned
into 10 chunks each. The freely available SMOBR package was modified and used for
our experiments. For simplicity we use the C-SVM and vary the regularization parameter.
TParallel, TSerial andTNoMod refer to the times required by SMO to converge when using
one iteration of parallel/serial/no LP on the dataset.

Adult1 Adult4
C TParallel TSerial TNoMod C TParallel TSerial TNoMod

0.1 2.84 2.04 7.650 0.1 20.42 13.26 59.935
0.5 5.57 3.99 9.215 0.5 46.29 40.82 63.645
1.0 5.48 7.25 10.885 1.0 80.33 64.37 107.475
5.0 107.37 110.07 307.135 5.0 1921.19 1500.42 1427.925

Table 2: Performance of SMO Initialization on the Adult dataset.

Web1 Web4
C TParallel TSerial TNoMod C TParallel TSerial TNoMod

0.1 21.36 15.65 27.34 0.1 63.76 77.05 95.10
0.5 34.64 35.66 60.12 0.5 140.61 149.80 156.525
1.0 61.15 38.56 63.745 1.0 254.84 298.59 232.120
5.0 224.15 62.41 519.67 5.0 1959.08 3188.75 2223.225

Table 3: Performance of SMO Initialization on the Web dataset.

As can be seen our initialization significantly speeds up the SMO in many cases some-
times acheving upto 4 times speed up. Although in some cases (esp for large values ofC)
our method seems to slow down convergence of SMO. In general serial updates seem to
perform better than parallel updates. This is to be expected since we use the information
from other blocks as soon as they become available in case of the serial algorithm while we
completely ignore the other blocks in the parallel algorithm.

6 Summary And Discussion

Laplace propagation fills the gap between Expectation Propagation, which requires exact
computation of first and second order moments, and message passing algorithms when
optimizing structured density functions. Its main advantage is that it only requires the
Laplace approximation in each computational step, while being applicable to a wide range
of optimization tasks. In this sense, it complements Minka’s Expectation Propagation,
whenever exact expressions are not available.

As a side effect, we showed that Tresp’s Bayes Committee Machine and Support Vector
Chunking methods are special instances of this strategy, which also sheds light on the fact
why simple averaging schemes for SVM, such as the one of Colobert and Bengio seem to
work in practice.

The key point in our proofs was that we split the data into disjoint subsets. By the assump-
tion of independent and identically distributed data it followed that the variable assignments
are conditionally independent from each other, given the parameterθ, which led to a fa-
vorable factorization property inp(θ|Z). It should be noted that LP allows one to perform
chunking-style optimization in Gaussian Processes, which effectively puts an upper bound
on the amount of memory required for optimization purposes.

Acknowledgements We thank Nir Friedman, Zoubin Ghahramani and Adam Kowalczyk
for useful suggestions and discussions.

References

[1] C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.

[2] R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of svms for very large scale
problems. InAdvances in Neural Information Processing Systems. MIT Press, 2002.

[3] S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel rep-
resentations. Journal of Machine Learning Research, 2:243–264, Dec 2001.
http://www.jmlr.org.

[4] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C.
Burges, and A. J. Smola, editors,Advances in Kernel Methods—Support Vector Learn-
ing, pages 169–184, Cambridge, MA, 1999. MIT Press.

[5] M. I. Jordan, Z. Gharamani, T. S. Jaakkola, and L. K. Saul. An introduction to vari-
ational methods for graphical models. InLearning in Graphical Models, volume
M. I. Jordan, pages 105–162. Kluwer Academic, 1998.

[6] T. Minka. Expectation Propagation for approximative Bayesian inference. PhD thesis,
MIT Media Labs, Cambridge, USA, 2001.

[7] J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufman, 1988.

[8] J. C. Platt. Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998.

[9] V. Tresp. A Bayesian committee machine.Neural Computation, 12(11):2719–2741,
2000.

