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Abstract

The problem of “Structure From Motion” is a central problem in
vision: given the 2D locations of certain points we wish to recover
the camera motion and the 3D coordinates of the points. Un-
der simplified camera models, the problem reduces to factorizing
a measurement matrix into the product of two low rank matrices.
Each element of the measurement matrix contains the position of
a point in a particular image. When all elements are observed, the
problem can be solved trivially using SVD, but in any realistic sit-
uation many elements of the matrix are missing and the ones that
are observed have a different directional uncertainty. Under these
conditions, most existing factorization algorithms fail while human
perception is relatively unchanged.

In this paper we use the well known EM algorithm for factor analy-
sis to perform factorization. This allows us to easily handle missing
data and measurement uncertainty and more importantly allows us
to place a prior on the temporal trajectory of the latent variables
(the camera position). We show that incorporating this prior gives
a significant improvement in performance in challenging image se-
quences.

1 Introduction

Figure 1 illustrates the classical structure from motion (SFM) displays introduced by
Ullman [13]. A transparent cylinder with painted dots rotates around its elongated
axis. Even though no structure is apparent in any single frame, humans obtain a
vivid percept of a cylinder!.

SFM has been dealt with extensively in the computer vision literature. Typically a
small number of feature points are tracked and a measurement matrix is formed in

'An  online animation of this famous stimulus is available at:
aris.ss.uci.edu/cogsci/personnel /hoffman/cylinderapplet.html



Transparent
cylinder v

Figure 1: The classical structure from motion stimulus introduced by Ullman [13].
Humans continue to perceive the correct structure even when each dot appears only
for a small number of frames, but most existing factorization algorithm fail in this
case. Replotted from [1]

which each element corresponds to the image coordinates of a tracked point. The
goal is to recover the camera motion and the 3D location of these points. Under
simplified camera models it can be shown that this problem reduces to a problem of
matrix factorization. We wish to describe the measurement matrix as a product of
two low rank matrices. Thus if all features are reliably tracked in all the frames, the
problem can be solved trivially using SVD [11]. In particular, performing an SVD
on the measurement matrix of the rotating cylinder stimulus recovers the correct
structure even if the measurement matrix is contaminated with significant amounts
of noise and if the number of frames is relatively small.

But in any realistic situation, the measurement matrix will have missing entries.
This is either because certain feature points are occluded in some of the frames and
hence their positions are unknown, or due to a failure in the tracking algorithm.
This has lead to the development of a number of algorithms for factorization with
missing data [11, 6, 9, 2].

Factorization with missing data turns out to be much more difficult than the full
data case. To illustrate the difficulty, consider the cylinder stimulus in figure 1.
Humans still obtain a vivid percept of a cylinder even when each dot has a short
“dot life”. That is, each dot appears at a random starting frame, continues to appear
for a small number of frames, and then disappears [12]. We applied the algorithms
in [11, 6, 9, 2] to a sequence of 20 frames of a rotating cylinder in which the dot life
was 10 frames. Thus the matrix was half full (or half empty). Surprisingly, none of
the algorithms could recover the cylinder structure. They either failed to find any
structure or they gave a structure that was drastically different from a cylinder.
Presumably, humans are using additional prior knowledge that the algorithms are
not.

In this paper we point out a source of information in image sequences that is usually
neglected by factorization algorithms: temporal coherence. In a video sequence, the
camera location at time ¢ + 1 will probably be similar to its location at time ¢. In
other words, if we randomly permute the temporal order of the frames, we will get
a very unlikely image sequence. Yet nearly all existing factorization algorithms will
be invariant to this random permutation of the frames: they only seek a low rank
approximation to a matrix and permuting the rows of the matrix will not change
the approximation.

In order to enable the use of temporal coherence, we formulate factorization in



terms of maximum likelihood for a factor analysis model, where the latent vari-
able corresponds to camera position. We use the familiar EM algorithm for factor
analysis to perform factorization with missing data and uncertainty. We show how
to add a temporal coherence prior to the model and derive the EM updates. We
show that incorporating this prior gives a significant improvement in performance
in challenging image sequences.

2 Model

A set of P feature points in F' images are tracked along an image sequence. Let
(ugp,vypp) denote image coordinates of feature point p in frame f. Let U = (uyp),
V = (vfp) and W = (w;;) where wo;—1; = u;; and wo; ; = v;; for 1 <4 < F ie.
W is an interleaving of the rows of U and V.

In the orthographic camera model, points in the 3D world are projected in parallel
onto the image plane. For example, if the camera’s optical center is in the origin
(w.r.t 3D coordinate system), and its x,y axes coincide with X,Y axes in the 3D
world, then taking a picture is a simple projection (in homogeneous coordinates):
X
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model, a camera can undergo rotation, translation, or a combination of the two.

. The depth, Z, has no influence on the image. In this

Under orthography, and in the absence of noise,

Wlspwp = [Mlypya [Slixp (1)
M, X, - Xp
where M = : and S = }le gp M describes camera
: . - Zp
Mp1op. 4 1o 1 ],p
motion (rotation and translation, [M;],,, = n% o ). m; and n; are 3 x 1

vectors that describe the rotation of the camera; d; and e; are scalars describing
camera translation, 2 and S describes points location in 3D.

For noisy observations, the model becomes:

Wlarwp = Mlypys [Slaxp + Mlapxp (2)
where 7 is Gaussian noise.

If the elements of the noise matrix n are uncorrelated and of equal variance then we
seek a factorization that minimizes the mean squared error between W and MS.
This can be solved trivially using the SVD of W. Missing data can be modeled
using equation 2 by assuming some elements of the noise matrix n have infinite
variance. Obviously the SVD is not the solution once we allow different elements
of n to have different variances.

2.1 Factorization as factor analysis

It is well known that the SVD calculation can be formulated as a limiting case of
maximum likelihood factor analysis [8]. In standard factor analysis we have a set

*We do not subtract the mean of each row from it, since in case of missing data the
centroids of points do not coincide.



of observations {y(¢)} that are linear combinations of a latent variable x(t):

y(t) = Ax(t) +n(t) (3)

with z(t) ~ N(0,021) and n(t) ~ N(0,¥;). If ¥, is a diagonal matrix with constant
elements ¥; = o2] then in the limit o/0, — 0 the ML estimate for A will give the
same answer as the SVD. We now show how to rewrite the SFM problem in this
form.

In equation 1 the horizontal and vertical coordinates of the same point appear in
different rows. It can be rewritten as:

S 0
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Let y(t) be the vector of noisy observations (noisy image locations% at time t,
ie. y(t) = [u(t)v(t)], that is y(t) = [ur(t), - up(t)vi(t), - vp(t)]*. Let x(t)
be a vector of length 8 that denotes the camera position at time t z(t) =

T
()T d(t) n(t)T e(t)]” and let A — {50
of the matrix [U V] and z(t) with the tth row of [m n], then equation 4 is equivalent
to equation 3.

SS)T} . Identifying y(t) with the tth row

We can now use the standard EM algorithm for factor analysis to find the ML
estimate for S.

E step:
E(t)y(t) = (0320 + AT A) " AT W (1) (5)
Vi(t)y(t) = (0720 +ATw;1A) (6)
<z(t)> = E(x(t)y()) (7)
<z > = V(e@)|yl)— < z(t) >< z(t) >T (8)

M step: In the M step we solve the normal equations for the structure S. The exact
form depends on the structure of ¥;. Denote by s, a vector of length 3 that denotes
the 3D coordinates of point p then for a diagonal noise covariance matrix ¥; the M
step is:
sp = ByC, ! (9)
where
B, = Z (U, (p,p) (wp— < di >) <m(t)” > (10)

t
+ U (p+ Pop+ P)(vgp— < e >) < n(t) >7]

C, = > [ p,p) <m(tym(t)" >

+ U (p+ P,p+P) <n(t)n(t)” >]

where the expectation required in the M step are the appropriate subvectors and
submatrices of < z(t) > and < z(t)z(t)T >.

If we set W, (p,p) = U7 (p+ P,p+ P) = 0 if point p is missing in frame ¢ then we
obtain an EM algorithm for factorization with missing data. Note that the form of
the updates means we can put any value we wish in the missing elements of y and
they will be ignored by the algorithm.
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Figure 2: a. The graphical model assumed by most factorization algorithms for
SFM. The camera location z(t) is assumed to be independent of the camera loca-
tion at any other time step. b. The graphical model assumed by our approach.
We model temporal coherence by assuming a Markovian structure on the camera
location.

A more realistic noise model for real images is that U, is not diagonal but rather that
the noise in the horizontal and vertical coordinates of the same point are correlated
with an arbitrary 2 x 2 inverse covariance matrix. This problem is usually called
factorization with uncertainty [5, 7]. It is easy to derive the M step in this case as
well. Tt is similar to equation 9 except that cross terms involving ¥; *(p,p + P) are
also involved:

sp = (Bp+By)(Cp+Cp)~! (11)
where
B, = Z [V, (p,p +P)(vp—<e>) <m(t) "> (12)
+ U (p+ Pyp)(ugy— < di>) < nft)>"]
C, = > [¥ ' pp+P)<nt)mt)" >

+ \I't_l(p + Pp) < m(t)n(t)T >]

Regardless of uncertainty and missing data the complexity of the EM algorithm
grows linearly with the number of feature points and the number of frames. At
every iteration, the most computationally intensive step is an inversion of an 8 x 8
matrix.

2.2 Adding temporal coherence

The factor analysis algorithm for factorization assumes that the latent variables
x(t) are independent. In SFM this assumption means that the camera location in
different frames is independent and hence permuting the order of the frames makes
no difference for the factorization. As mentioned in the introduction, in almost any
video sequence this assumption is wrong. Typically camera location varies smoothly
as a function of time.

Figure 2a shows the graphical model corresponding to most factorization algorithms:
the independence of the camera location is represented by the fact that every time
step is isolated from the other time steps in the graph. But it is easy to fix this
assumption by adding edges between the latent variables as shown in figure 2b.

Specifically, we use a second order approximation to the motion of the camera:

z(t) = z(t—-1)+o(t—-1)+ %a(t -1+e (13)
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Figure 3: Comparison of factor analysis and Jacobs’ algorithm on synthetic se-
quences. All other existing algorithms performed worse than Jacobs. They all fail
when there is noise and missing data while factor analysis with temporal coherence
succeeds. Structure and motion are shown from a top view.

v(t) = ovt—1)+at—1)+e (14)
at) = at—1)+e€3 (15)
y(t) = Az(t) +n(t) (16)

Note that we do not assume that the 2D trajectory of each point is smooth. Rather
we assume the 3D trajectory of the camera is smooth.

It is straightforward to derive the EM iterations for a ML estimate of S using the
model in equation 16. The M step is unchanged from the classical factor analysis
and is given by equation 9. The only change in the E step is that E(z(t)|y) and
V(z(t)|y) need to be calculated using a Kalman smoother. We use a standard RTS
smoother [4]. Note that the computation of the E step is still linear in the number
of frames and datapoints.

Kalman filtering has been used extensively in a more perspective SFM set-
ting(e.g. [10]). However, in perspective projections the problem is no longer one
of factorization. Thus even for Gaussian noise, the Extended Kalman filter needs
to be used, smoothing is not performed and no guarantee of increase in likelihood
is obtained. Within the factorization framework, we can use the classical Kalman
filter and obtain a simple algorithm that provably increases the likelihood at every
iteration.

3 Experiments

In this section we describe the experimental performance of EM with time coherence
compared to ground truth and to previous algorithms for structure from motion with
missing data [11, 6, 9, 2]. For [11, 6, 9] we used the Matlab implementation made
public by D. Jacobs.

The first input sequence is the sequence of the cylinder shown in figure 1. 100
points uniformly drawn from the cylinder surface are tracked over 20 frames. Each
of the points appears for 10 frames, starting at a random time, and then disappears.
The observed image locations were added a Gaussian noise with standard deviation
o=0.1.

We checked the performance of the different algorithms in the cases of: (1) full noise
free observation matrix , (2) noisy full observation matrix, (3) noiseless observations



Error as function of noise Error as function of missing data

"
P — e A 1020 . - - - -
+  EMwith Temporal Coherence
O Em 9t| + EMwith Temporal Coherence
A Jacob O EM
7 acobs kG glL2 Jacobs
m .
s, g7
H e o o B
¢ 5 6
3 =
z A g
g g°
2 c
£, A H
g4 o o o g 3 o
5 A
2
+ o+ E
3 s w8 T + A
1
u]
g & [ N S-S - S S NS =
0 o o1 o150z o5 03 om 04 o 05 0.1 0.2 0.3 0.4 0.5
percentage of missing data noise level (sigma)

Figure 4: Graphs depict influence of noise and percentage of missing data on recon-
struction results of factor analysis and [6].

Figure 5: Results of scene reconstruction from a real sequence: A binder and is
placed on a rotating surface filmed with a static camera. Our algorithm succeeded
in (approximately) obtaining the right structure and all other algorithms failed.
Results are shown in top view.

with missing data and (4) noisy observations with missing data.

All algorithms performed well and gave similar results for the full matrix noiseless
sequence.

In the fully observed noisy case, factor analysis without temporal coherence gave
comparable performance to Tomasi-Kanade, which minimize |[MS — W|%. When
temporal coherence was added, the reconstruction results were improved. The re-
sults of Shum’s algorithm were similar to Tomasi-Kanade. The algorithms of Jacobs
and Brand turned to be noise sensitive.

In the case of noiseless missing data (figure 3 top), our algorithm and Jacobs’
algorithm reconstruct the correct motion and structure. Tomasi-Kanade’s algorithm
and Shum’s algorithm could not handle this pattern of missing data and failed to
give any structure.

Once we add even very mild amounts of noise (figure 3 middle) all existing algo-
rithms fail. While factor analysis with temporal coherence continues to extract the
correct structure even for significant noise values.

Figure 5 shows result on a real sequence.



4 Discussion

Despite progress in algorithms for factorization with uncertainty the best existing
algorithms still fall far short of human performance, even for seemingly simple
stimuli. Presumably, humans are using additional prior information. In this paper
we have focused on one particular prior: the temporal smoothness of the camera
motion. We showed how to formulate SFM as a factor analysis problem and how to
add temporal coherence to the EM algorithm. Our experimental results show that
this simple prior can give a significant improvement in performance in challenging
sequences.

Temporal coherence is just one of many possible priors. It has been suggested that
humans also use a smoothness prior on the 3D surface they are perceiving [12]. It
would be interesting to extend our framework in this direction.

The most drastic simplification our model makes is the assumption of Gaussian
noise. It would be interesting to extend the algorithm to non Gaussian settings.
This may require approximate inference algorithms in the E step as used in [3].
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