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Abstract

There exist many different generalization error bounds for classification.
Each of these bounds contains an improvement over the others for cer-
tain situations. Our goal is to combine these different improvements into
a single bound. In particular we combine the PAC-Bayes approach intro-
duced by McAllester [1], which is interesting for averaging classifiers,
with the optimal union bound provided by the generic chaining technique
developed by Fernique and Talagrand [2]. This combination is quite nat-
ural since the generic chaining is based on the notion of majorizing mea-
sures, which can be considered as priors on the set of classifiers, and such
priors also arise in the PAC-bayesian setting.

1 Introduction

Since the first results of Vapnik and Chervonenkis on uniform laws of large numbers for
classes of {0, 1}-valued functions, there has been a considerable amount of work aiming
at obtaining generalizations and refinements of these bounds. This work has been carried
out by different communities. On the one hand, people developing empirical processes the-
ory like Dudley and Talagrand (among others) obtained very interesting results concerning
the behaviour of the suprema of empirical processes. On the other hand, people explor-
ing learning theory tried to obtain refinements for specific algorithms with an emphasis on
data-dependent bounds.
One crucial aspect of all the generalization error bounds is that they aim at controlling the
behaviour of the function that is returned by the algorithm. This function is data-dependent
and thus unknown before seeing the data. As a consequence, if one wants to make state-
ments about its behaviour (e.g. the difference between its empirical error and true error),
one has to be able to predict which function is likely to be chosen by the algorithm. But
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since this cannot be done exactly, there is a need to provide guarantees that hold simulta-
neously for several candidate functions. This is known as the union bound. The way to
perform this union bound optimally is now well mastered in the empirical processes com-
munity.
In the learning theory setting, one is interested in bounds that are as algorithm and data
dependent as possible. This particular focus has made concentration inequalities (see e.g.
[3]) popular as they allow to obtain data-dependent results in an effortless way. Another
aspect that is of interest for learning is the case where the classifiers are randomized or
averaged. McAllester [1, 4] has proposed a new type of bound that takes the randomization
into account in a clever way.
Our goal is to combine several of these improvements, bringing together the power of
the majorizing measures as an optimal union bound technique and the power of the PAC-
Bayesian bounds that handle randomized predictions efficiently, and obtain a generalization
of both that is suited for learning applications.
The paper is structured as follows. Next section introduces the notation and reviews the
previous improved bounds that have been proposed. Then we give our main result and
discuss its applications, showing in particular how to recover previously known results.
Finally we give the proof of the presented results.

2 Previous results

We first introduce the notation and then give an overview of existing generalization error
bounds. We consider an input space X , an output space Y and a probability distribution
P on the product space Z , X × Y . Let Z , (X,Y ) denote a pair of random variables
distributed according to P and for a given integer n, let Z1, . . . , Zn and Z ′

1, . . . , Z
′
n be two

independent samples of n independent copies of Z. We denote by Pn, P ′
n and P2n the

empirical measures associated respectively to the first, the second and the union of both
samples.
To each function g : X → Y we associate the corresponding loss function f : Z →
R defined by f(z) = L[g(x), y] where L is a loss function. In classification, the loss
function is L = Ig(x)6=y where I denotes the indicator function. F will denote a set of
such functions. For such functions, we denote their expectation under P by Pf and their
empirical expectation by Pnf (i.e. Pnf = n−1

∑n
i=1 f(Zi)). En, E

′
n and E2n denote the

expectation with respect to the first, second and union of both training samples.
We consider the pseudo-distances d2(f1, f2) = P (f1 − f2)

2 and similarly dn, d′
n and d2n.

We define the covering number N(F , ε, d) as the minimum number of balls of radius ε
needed to cover F in the pseudo-distance d.
We denote by ρ and π two probability measures on the space F , so that ρPf will actually
mean the expectation of Pf when f is sampled according to the probability measure ρ.
For two such measures, K(ρ, π) will denote their Kullback-Leibler divergence (K(ρ, π) =

ρ log dρ
dπ when ρ is absolutely continuous with respect to π and K(ρ, π) = +∞ otherwise).

Also, β denotes some positive real number while C is some positive constant (whose value
may differ from line to line) and M1

+(F) is the set of probability measures on F . We
assume that the functions in F have range in [a, b].

Generalization error bounds give an upper bound on the difference between the true and
empirical error of functions in a given class, which holds with high probability with respect
to the sampling of the training set.
Single function. By Hoeffding’s inequality one easily gets that for each fixed f ∈ F , with
probability at least 1 − β,

Pf − Pnf ≤ C

√

log 1/β

n
. (1)

Finite union bound. It is easy to convert the above statement into one which is valid



simultaneously for a finite set of functions F . The simplest form of the union bound gives
that with probability at least 1 − β,

∀f ∈ F , Pf − Pnf ≤ C

√

log |F| + log 1/β

n
. (2)

Symmetrization. When F is infinite, the trick is to introduce the second sample
Z ′

1, . . . , Z
′
n and to consider the set of vectors formed by the values of each function in

F on the double sample. When the functions have values in {0, 1}, this is a finite set and
the above union bound applies. This idea was first used by Vapnik and Chervonenkis [5] to
obtain that with probability at least 1 − β,

∀f ∈ F , Pf − Pnf ≤ C

√

log E2nN(F , 1/n, d2n) + log 1/β

n
. (3)

Weighted union bound and localization. The finite union bound can be directly extended
to the countable case by introducing a probability distribution π over F which weights each
function and gives that with probability at least 1 − β,

∀f ∈ F , Pf − Pnf ≤ C

√

log 1/π(f) + log 1/β

n
. (4)

It is interesting to notice that now the bound depends on the actual function f being con-
sidered and not just on the set F . This can thus be called a localized bound.
Variance. Since the deviations between Pf and Pnf for a given function f actually de-
pend on its variance (which is upper bounded by Pf 2/n or Pf/n when the functions are
in [0, 1]), one can refine (1) into

Pf − Pnf ≤ C

(
√

Pf2 log 1/β

n
+

log 1/β

n

)

, (5)

and combine this improvement with the above union bounds. This was done by Vapnik and
Chervonenkis [5] (for functions in {0, 1}).
Averaging. Consider a probability distribution ρ defined on a countable F , take the expec-
tation of (4) with respect to ρ and use Jensen’s inequality. This gives with probability at
least 1 − β,

∀ρ, ρ(Pf − Pnf) ≤ C

√

K(ρ, π) + H(ρ) + log 1/β

n
,

where H(ρ) is the Shannon entropy. The l.h.s. is the difference between true and empirical
error of a randomized classifier which uses ρ as weights for choosing the decision function
(independently of the data). The PAC-Bayes bound [1] is a refined version of the above
bound since it has the form (for possibly uncountable F)

∀ρ, ρ(Pf − Pnf) ≤ C

√

K(ρ, π) + log n + log 1/β

n
. (6)

To some extent, one can consider that the PAC-Bayes bound is a refined union bound where
the gain happens when ρ is not concentrated on a single function (or more precisely ρ has
entropy larger than log n).
Rademacher averages. The quantity EnEσ supf∈F

1
n

∑

σif(Zi), where the σi are inde-
pendent random signs (+1,−1 with probability 1/2), called the Rademacher average for
F , is, up to a constant equal to En supf∈F Pf −Pnf which means that it best captures the
complexity of F . One has with probability 1 − β,

∀f ∈ F , Pf − Pnf ≤ C

(

1

n
EnEσ sup

f∈F

∑

σif(Zi) +

√

log 1/β

n

)

. (7)



Chaining. Another direction in which the union bound can be refined is by considering
finite covers of the set of function at different scales. This is called the chaining technique,
pioneered by Dudley (see e.g. [6]) since one constructs a chain of functions that approxi-
mate a given function more and more closely. The results involve the Koltchinskii-Pollard
entropy integral as, for example in [7], with probability 1 − β,

∀f ∈ F , Pf − Pnf ≤ C

(

1√
n

En

∫ ∞

0

√

log N(F , ε, dn)dε +

√

log 1/β

n

)

. (8)

Generic chaining. It has been noticed by Fernique and Talagrand that it is possible to
capture the complexity in a better way than using minimal covers by considering majorizing
measures (essentially optimal for Gaussian processes). Let r > 0 and (Aj)j≥1 be partitions
of F of diameter r−j w.r.t. the distance dn such that Aj+1 refines Aj . Using (7) and
techniques from [2] we obtain that with probability 1 − β, ∀f ∈ F

Pf − Pnf ≤ C





1√
n

En inf
π∈M1

+
(F)

sup
f∈F

∞
∑

j=1

r−j
√

log 1/πAj(f) +

√

log 1/β

n



 . (9)

If one takes partitions induced by minimal covers of F at radii r−j , one recovers (8) up to
a constant.
Concentration. Using concentration inequalities as in [3] for example, one can get rid of
the expectation appearing in the r.h.s. of (3), (8), (7) or (9) and thus obtain a bound that
can be computed from the data.

Refining the bound (7) is possible as one can localize it (see e.g. [8]) by computing the
Rademacher average only on a small ball around the function of interest. So this comes
close to combining all improvements. However it has not been combined with the PAC-
Bayes improvement. Our goal is to try and combine all the above improvements.

3 Main results

Let F be as defined in section 2 with a = 0, b = 1 and π ∈ M1
+(F). Instead of using

partitions as in (9) we use approximating sets (which also induce partitions but are easier
to handle here). Consider a sequence Sj of embedded finite subsets of F : {f0} , S0 ⊂
· · · ⊂ Sj−1 ⊂ Sj ⊂ · · · .
Let pj : F → Sj be maps (which can be thought of as projections) satisfying pj(f) = f
for f ∈ Sj and pj−1 ◦ pj = pj−1.

The quantities π, Sj and pj are allowed to depend on X2n
1 in an exchangeable way (i.e.

exchanging Xi and X ′
i does not affect their value). For a probability distribution ρ on

F , define its j-th projection as ρj =
∑

f∈Sj
ρ{f ′ : pj(f

′) = f}δf , where δf denotes
the Dirac measure on f . To shorten notations, we denote the average distance between
two successive “projections” by ρd2

j , ρd2
2n[pj(f), pj−1(f)]. Finally, let ∆n,j(f) ,

P ′
n[f − pj(f)] − Pn[f − pj(f)].

Theorem 1 If the following condition holds

lim
j→+∞

sup
f∈F

∆n,j(f) = 0, a.s. (10)

then for any 0 < β < 1/2, with probability at least 1 − β, for any distribution ρ, we have

ρP ′
nf − P ′

nf0 ≤ ρPnf − Pnf0 + 5

+∞
∑

j=1

√

ρd2
jK(ρj , πj)

n
+

1√
n

+∞
∑

j=1

χj(ρd2
j ),



where χj(x) = 4

√

x log
(

4j2β−1 log(e2/x)
)

.

Remark 1 Assumption (10) is not very restrictive. For instance, it is satisfied when F is
finite, or when limj→+∞ supf∈F |f−pj(f)| = 0, almost surely or also when the empirical
process

[

f 7→ Pf − Pnf
]

is uniformly continuous (which happens for classes with finite
V C dimension in particular) and limj→+∞ supf∈F d2n(f, pj(f)) = 0.

Remark 2 Let G be a model (i.e. a set of prediction functions). Let g̃ be a reference
function (not necessarily in G). Consider the class of functions F =

{

z 7→ L[g(x), y] :

g ∈ G ∪ {g̃}
}

. Let f0 = L[g̃(x), y]. The previous theorem compares the risk on the second
sample of any (randomized) estimator with the risk on the second sample of the reference
function g̃.

Now let us give a version of the previous theorem in which the second sample does not
appear.

Theorem 2 If the following condition holds

lim
j→+∞

sup
f∈F

E
′
n

[

∆n,j(f)
]

= 0, a.s. (11)

then for any 0 < β < 1/2, with probability at least 1 − β, for any distribution ρ, we have

ρPf − Pf0 ≤ ρPnf − Pnf0 + 5
+∞
∑

j=1

√

E′
n[ρd2

j ]E
′
n[K(ρj , πj)]

n
+

1√
n

+∞
∑

j=1

χj

(

E
′
n[ρd2

j ]
)

.

4 Discussion

We now discuss in which sense the result presented above combines several previous im-
provements in a single bound.
Notice that our bound is localized in the sense that it depends on the function of interest (or
rather on the averaging distribution ρ) and does not involve a supremum over the class.
Also, the union bound is performed in an optimal way since, if one plugs in a distribution ρ
concentrated on a single function, takes a supremum over F in the r.h.s., and upper bounds
the squared distance by the diameter of the partition, one recovers a result similar to (9)
up to logarithmic factors but which is localized. Also, when two successive projections
are identical, they do not enter in the bound (which comes from the fact that the variance
weights the complexity terms). Moreover Theorem 1 also includes the PAC-Bayesian im-
provement for averaging classifiers since if one considers the set S1 = F one recovers
a result similar to McAllester’s (6) which in addition contains the variance improvement
such as in [9].
Finally due to the power of the generic chaining, it is possible to upper bound our result by
Rademacher averages, up to logarithmic factors (using the results of [10] and [11]).

As a remark, the choice of the sequence of sets Sj can generally be done by taking succes-
sive covers of the hypothesis space with geometrically decreasing radii.

However, the obtained bound is not completely empirical since it involves the expectation
with respect to an extra sample. In the transduction setting, this is not an issue, it is even
an advantage as one can use the unlabeled data in the computation of the bound. However,
in the induction setting, this is a drawback. Future work will focus on using concentration
inequalities to give a fully empirical bound.



5 Proofs

Proof of Theorem 1: The proof is inspired by previous works on PAC-bayesian bounds
[12, 13] and on the generic chaining [2]. We first prove the following lemma.

Lemma 1 For any β > 0, λ > 0, j ∈ N
∗ and any exchangeable function π : X 2n →

M1
+(F), with probability at least 1 − β, for any probability distribution ρ ∈ M1

+(F), we
have

ρ
{

P ′
n[pj(f) − pj−1(f)] − Pn[pj(f) − pj−1(f)]

}

≤ 2λ
n ρd2

2n[pj(f), pj−1(f)] + K(ρ,π)+log(β−1)
λ .

Proof Let λ > 0 and let π : X 2n → M1
+(F) be an exchangeable function. Introduce the

quantity ∆i , pj(f)(Zn+i) − pj−1(f)(Zn+i) + pj−1(f)(Zi) − pj(f)(Zi) and

h , λP ′
n

[

pj(f)− pj−1(f)
]

− λPn

[

pj(f)− pj−1(f)
]

− 2λ2

n
d2n

[

pj(f), pj−1(f)
]

. (12)

By using the exchangeability of π, for any σ ∈ {−1;+1}n, we have

E2nπeh = E2nπe−
2λ2

n
d2n[pj(f),pj−1(f)]+ λ

n

Pn
i=1 ∆i

= E2nπe−
2λ2

n
d2n[pj(f),pj−1(f)]+ λ

n

Pn
i=1 σi∆i .

Now take the expectation wrt σ, where σ is a n-dimensional vector of Rademacher vari-
ables. We obtain

E2nπeh = E2nπe−
2λ2

n
d2n[pj(f),pj−1(f)]

∏n
i=1 cosh

(

λ
n∆i

)

≤ E2nπe−
2λ2

n
d2n[pj(f),pj−1(f)]e

Pn
i=1

λ2

2n2 ∆2
i

where at the last step we use that cosh s ≤ e
s2

2 . Since

∆2
i ≤ 2

[

pj(f)(Zn+i) − pj−1(f)(Zn+i)
]2

+ 2
[

pj(f)(Zi) − pj−1(f)(Zi)
]2

,

we obtain that for any λ > 0, E2nπeh ≤ 1. Therefore, for any β > 0, we have

E2nIlog πeh+log β>0 = E2nIπeh+log β>1 ≤ E2nπeh+log β ≤ β, (13)

On the event
{

log πeh+log β ≤ 0
}

, by the Legendre’s transform, for any probability distri-
bution ρ ∈ M1

+(F), we have

ρh + log β ≤ log πeh+log β + K(ρ, π) ≤ K(ρ, π), (14)

which proves the lemma.

Now let us apply this result to the projected measures πj and ρj . Since, by definition, π, Sj

and pj are exchangeable, πj is also exchangeable. Since pj(f) = f for any f ∈ Sj , with
probability at least 1 − β, uniformly in ρ, we have

ρj

{

P ′
n[f − pj−1(f)] − Pn[pj(f) − pj−1(f)]

}

≤ 2λ

n
ρjd

2
2n[f, pj−1(f)] +

K ′
j

λ
,

where K ′
j , K(ρj , πj) + log(β−1). By definition of ρj , it implies that

ρ
{

P ′
n[pj(f)−pj−1(f)]−Pn[pj(f)−pj−1(f)]

}

≤ 2λ

n
ρd2

2n[pj(f), pj−1(f)]+
K ′

j

λ
. (15)



To shorten notations, define ρd2
j , ρd2

2n[pj(f), pj−1(f)] and ρ∆j , ρ
{

P ′
n[pj(f) −

pj−1(f)] − Pn[pj(f) − pj−1(f)]
}

. The parameter λ minimizing the RHS of the previ-
ous equation depends on ρ. Therefore, we need to get a version of this inequality which
holds uniformly in λ.

First let us note that when ρd2
j = 0, we have ρ∆j = 0. When ρd2

j > 0, let m
√

log 2
2n and

λk = mek/2 and let b be a function from R
∗ to (0, 1] such that

∑

k≥1 b(λk) ≤ 1. From the
previous lemma and a union bound, we obtain that for any β > 0 and any integer j with
probability at least 1 − β, for any k ∈ N

∗ and any distribution ρ, we have

ρ∆j ≤ 2λk

n
ρd2

j +
K(ρj , πj) + log

(

[b(λk)]−1β−1
)

λk
.

Let us take the function b such that
[

λ 7→ log
(

[b(λ)]−1
)

λ

]

is continuous and decreasing.

Then there exists a parameter λ∗ > 0 such that 2λ∗

n ρd2
j =

K(ρj ,πj)+log([b(λ∗)]−1β−1)
λ∗

. For

any β < 1/2, we have (λ∗)2ρd2
j ≥ log 2

2 n, hence λ∗ ≥ m. So there exists an integer
k ∈ N

∗ such that λke−1/2 ≤ λ∗ ≤ λk. Then we have

ρ∆j ≤ 2λ∗

n

√
eρd2

j +
K(ρj ,πj)+log([b(λ∗)]−1β−1)

λ∗

= (1 +
√

e)

√

2
nρd2

j

[

K(ρj , πj) + log ([b(λ∗)]−1β−1)
]

.
(16)

To have an explicit bound, it remains to find an upperbound of [b(λ∗)]−1. When b is
decreasing, this comes down to upperbouding λ∗. Let us choose b(λ) = 1

[log( e2λ
m

)]2
when

λ ≥ m and b(λ) = 1/4 otherwise. Since b(λk) = 4
(k+4)2 , we have

∑

k≥1 b(λk) ≤ 1.

Tedious computations give λ∗ ≤ 7m

√
K′

j

ρd2
j

which combined with (16), yield

ρ∆j ≤ 5

√

ρd2
jK(ρj , πj)

n
+ 3.75

√

ρd2
j

n
log
(

2β−1 log
[ e2

ρd2
j

])

.

By simply using an union bound with weights taken proportional to 1/j2, we have that
the previous inequation holds uniformly in j ∈ N

∗ provided that β−1 is replaced with
π2

6 j2β−1
(

since
∑

j∈N∗ 1/j2 = π2/6 ≈ 1.64
)

. Notice that

ρ
[

P ′
nf −P ′

nf0 + Pnf0 −Pnf
]

= ρ∆n,J (f) +

J
∑

j=1

ρj

[

(P ′
n −Pn)f − (P ′

n −Pn)pj−1(f)
]

because pj−1 = pj−1 ◦ pj . So, with probability at least 1 − β, for any distribution ρ, we
have

ρ
[

P ′
nf − P ′

nf0 + Pnf0 − Pnf
]

≤ supF ∆n,J + 5
∑J

j=1

√

ρd2
j
K(ρj ,πj)

n

+3.75
∑J

j=1

√

ρd2
j

n log
(

3.3j2β−1 log
[

e2

ρd2
j

])

.

Making J → +∞, we obtain theorem 1. �

Proof of Theorem 2: It suffices to modify slightly the proof of theorem 1. Introduce U ,

supρ

{

ρh+log β−K(ρ, π)
}

, where h is still defined as in equation (12). Inequations (14)

implies that E2neU ≤ β. By Jensen’s inequality, we get EneE
′

nU ≤ β, hence En

{

E
′
nU ≥

0
}

≤ β. So with probability at least 1 − β, we have supρ E
′
n

{

ρh + log β − K(ρ, π)
}

≤
E
′
nU ≤ 0. �



6 Conclusion

We have obtained a generalization error bound for randomized classifiers which combines
several previous improvements. It contains an optimal union bound, both in the sense of
optimally taking into account the metric structure of the set of functions (via the majorizing
measure approach) and in the sense of taking into account the averaging distribution. We
believe that this is a very natural way of combining these two aspects as the result relies
on the comparison of a majorizing measure which can be thought of as a prior probability
distribution and a randomization distribution which can be considered as a posterior distri-
bution.
Future work will focus on giving a totally empirical bound (in the induction setting) and
investigating possible constructions for the approximating sets Sj .
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