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Abstract

A novel algorithm for actively trading stocks is presented. While tradi-
tional universal algorithms (and technical trading heuristics) attempt to
predict winners or trends, our approach relies on predictable statistical
relations between all pairs of stocks in the market. Our empirical results
on historical markets provide strong evidence that this type of techni-
cal trading can “beat the market” and moreover, can beat the best stock
in the market. In doing so we utilize a new idea for smoothing critical
parameters in the context of expert learning.

1 Introduction: The Portfolio Selection Problem

The portfolio selection (PS) problem is a challenging problem for machine learning, online
algorithms and, of course, computational finance. As is well known (e.g. see Lugosi [1])
sequence prediction under the log loss measure can be viewed as a special case of portfo-
lio selection, and perhaps more surprisingly, from a certain worst case minimax criterion,
portfolio selection is not essentially any harder (than prediction) as shown in [2] (see also
[1], Thm. 20 & 21). But there seems to be a qualitative difference between the practical
utility of “universal” sequence prediction and universal portfolio selection. Simply stated,
universal sequence prediction algorithms under various probabilistic and worst-case mod-
els work very well in practice whereas the known universal portfolio selection algorithms
do not seem to provide any substantial benefit over a naive investment strategy (see Sec. 4).

A major pragmatic question is whether or not a computer program can consistently out-
perform the market. A closer inspection of the interesting ideas developed in information
theory and online learning suggests that a promising approach is to exploit the natural
volatility in the market and in particular to benefit from simple and rather persistent statis-
tical relations between stocks rather than to try to predict stock prices or “winners”. We
present a non-universal portfolio selection algorithm1, which does not try to predict win-
ners. The motivation behind our algorithm is the rationale behindconstant rebalancing
algorithms and the worst case study of universal trading introduced by Cover [3]. Not only
does our proposed algorithm substantially “beat the market” on historical markets, it also
beats the best stock. So why are we presenting this algorithm and not just simply making
money? There are, of course some caveats and obstacles to utilizing the algorithm. But for
large investors the possibility of a goose laying silver (if not golden) eggs is not impossible.

1Any PS algorithm can be modified to be universal by investing any fixed fraction of the initial
wealth in a universal algorithm.



Assumea market withm stocks. Letvt = (vt(1), . . . , vt(m)) be the closing prices of the
m stocks for thetth day, wherevt(j) is the price of thejth stock. It is convenient to work
with relative pricesxt(j) = vt(j)/vt−1(j) so that an investment of $din thejth stock just
before thetth period yieldsdxt(j) dollars. We letxt = (xt(1), . . . , xt(m)) denote the
market vectorof relative prices corresponding to thetth day. Aportfolio b is an allocation
of wealth in the stocks, specified by the proportionsb = (b(1), . . . , b(m)) of current dollar
wealth invested in each of the stocks, whereb(j) ≥ 0 and

∑
j b(j) = 1. Thedaily return

of a portfoliob w.r.t. a market vectorx is b · x =
∑

j b(j)x(j) and the (compound)total
return, retX(b1, . . . ,bn), of a sequence of portfoliosb1, . . . ,bn w.r.t. a market sequence
X = x1, . . . ,xn is

∏n
t=1 bt · xt. A portfolio selection algorithm is any deterministic or

randomized rule for specifying a sequence of portfolios.

The simplest strategy is to “buy-and-hold” stocks using some portfoliob. We de-
note this strategy byBAHb and let U-BAH denote the uniform buy-and-hold whenb =
(1/m, . . . , 1/m). We say that a portfolio selection algorithm “beats the market” when
it outperformsU-BAH on a given market sequence although in practice “the market” can
be represented by some non-uniformBAH (e.g. DJIA). Buy-and-hold strategies rely on the
tendency of successful markets to grow. Much of modern portfolio theory focuses on how
to choose a goodb for the buy-and-hold strategy. The seminal ideas of Markowitz in [4]
yield an algorithmic procedure for choosing the weights of the portfoliob so as to mini-
mize the variance for any feasible expected return. This variance minimization is possible
by placing appropriate larger weights on subsets of anti-correlated stocks, an idea which
we shall also utilize. We denote the optimalin hindsightbuy-and-hold strategy (i.e. invest
only in the best stock) byBAH∗.

An alternative approach to the static buy-and-hold is to dynamically change the portfolio
during the trading period. This approach is often called “active trading”. One example
of active trading isconstant rebalancing; namely, fix a portfoliob and (re)invest your
dollarseach dayaccording tob. We denote this constant rebalancing strategy byCBALb

and let CBAL∗ denote the optimal (in hindsight)CBAL. A constant rebalancing strategy
can often take advantage of market fluctuations to achieve a return significantly greater
than that ofBAH∗. CBAL∗ is always at least as good as the best stockBAH∗ and in some real
market sequences a constant rebalancing strategy will take advantage of market fluctuations
and significantly outperform the best stock (see Table 1). For now, consider Cover and
Gluss’ [5] classic (but contrived) example of a market consisting of cash and one stock and
the market sequence of price relatives

(
1

1/2

)
,
(
1
2

)
,
(

1
1/2

)
,
(
1
2

)
, . . . Now consider theCBALb

with b = ( 1
2 , 1
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4 andon
each even day, it is3/2. The total return overn days is therefore(9/8)n/2, illustrating
how a constant rebalancing strategy can yield exponential returns in a “no-growth market”.
Under the assumption that the daily market vectors are observations of identically and
independently distributed (i.i.d) random variables, it is shown in [6] thatCBAL∗ performs
at least as good (in the sense of expected total return) as the best online portfolio selection
algorithm. However, many studies (see e.g. [7]) argue that stock price sequences do have
long term memory and are not i.i.d.

A non-traditional objective (in computational finance) is to develop online trading strate-
gies that are in some sensealways guaranteedto perform well. Within a line of research
pioneered by Cover [5, 3, 2] one attempts to design portfolio selection algorithms that
can provably do well (in terms of their total return) with respect to some online or offline
benchmark algorithms. Two naturalonlinebenchmark algorithms are the uniform buy and
hold U-BAH, and the uniform constant rebalancing strategyU-CBAL, which is CBALb with
b = ( 1

m , . . . , 1
m ). A naturaloffline benchmark isBAH∗ and a more challenging offline

benchmark isCBAL∗.

Cover and Ordentlich’sUniversal Portfoliosalgorithm [3, 2], denoted here byUNIVERSAL,



was proven to beuniversalagainstCBAL∗, in the sense thatfor every market sequenceX of
m stocks overn days, it guarantees a sub-exponential (indeed polynomial) ratio inn,

retX(CBAL
∗)/retX(UNIVERSAL) ≤ O

(
n

m−1
2

)
(1)

Froma theoretical perspective this is surprising as the ratio is a polynomial inn (for fixed
m) whereasCBAL∗ is capable of exponential returns. From a practical perspective, while the
ration

m−1
2 is not very useful, the motivation that underlies the potential ofCBAL algorithms

is useful! We follow this motivation and develop a new algorithm which we callANTICOR.
By attempting to systematically follow the constant rebalancing philosophy,ANTICOR is
capable of some extraordinary performance in the absence of transaction costs, or even
with very small transaction costs.

2 Trying to Learn the Winners

The most direct approach to expert learning and portfolio selection is a “(reward based)
weighted average prediction” algorithm which adaptively computes a weighted average of
experts by gradually increasing (by some multiplicative or additive update rule) the relative
weights of the more successful experts. For example, in the context of the PS problem
consider the “exponentiated gradient”EG(η) algorithm proposed by Helmboldet al. [8].
TheEG(η) algorithm computes the next portfolio to be

bt+1(j) =
bt(j) exp {ηxt(j)/(bt · xt)}∑m

j=1 bt(j) exp {ηxt(j)/(bt · xt)}
whereη is a “learning rate” parameter.EG was designed to greedily choose the best
portfolio for yesterday’s marketxt while at the same time paying a penalty from mov-
ing far from yesterday’s portfolio. For a universal bound onEG, Helmbold et al. set
η = 2xmin

√
2(log m)/n wherexmin is a lower bound on any price relative.2 It is easy

to see that asn increases,η decreases to0 so that we can think ofη as being very small in
order to achieve universality. Whenη = 0, the algorithmEG(η) degenerates to the uniform
CBAL which is not a universal algorithm. It is also the case that if each day the price relatives
for all stocks were identical, thenEG (as well as other PS algorithms) will converge to the
uniform CBAL. Combining a small learning rate with a “reasonably balanced” market we
expect the performance ofEG to be similar to that of the uniformCBAL and this is confirmed
by our experiments (see Table1).3

Cover’s universal algorithms adaptively learn each day’s portfolio by increasing the weights
of successfulCBALs. The update rule for these universal algorithms is

bt+1 =
∫

b · rett(CBALb)dµ(b)∫
rett(CBALb)dµ(b)

,

whereµ(·) is some prior distribution over portfolios. Thus, the weight of a possible port-
folio is proportional to its total returnrett(b) thus far times its prior. The particular uni-
versal algorithm we consider in our experiments uses the Dirichlet prior (with parameters
(1
2 , . . . , 1

2 )) [2]. Within a constant factor, this algorithm attains the optimal ratio (1) with
respect toCBAL∗.4 The algorithm is equivalent to a particular static distribution over the

2Helmboldet al. show how to eliminate the need to knowxmin andn. While EG can be made
universal, its performance ratio is only sub-exponential (and not polynomial) inn.

3Following Helmboldet al. we fix η = 0.01 in our experiments.
4Experimentally (on our datasets) there is a negligible difference between the uniform universal

algorithm in [3] and the above Dirichlet universal algorithm.



classof all CBALs. This equivalence helps to demystify the universality result and also
shows that the algorithm can never outperformCBAL∗.

A different type of “winner learning” algorithm can be obtained from any sequence predic-
tion strategy. For each stock, a (soft) sequence prediction algorithm provides a probability
p(j) that the next symbol will bej ∈ {1, . . . , m}. We view this as a prediction that stock
j will have the best price relative for the next day and setbt+1(j) = pj . We consider pre-
dictions made using the prediction component of the well-known Lempel-Ziv (LZ) lossless
compression algorithm [9]. This prediction component is nicely described in Langdon [10]
and in Feder [11]. As a prediction algorithm,LZ is provably powerful in various senses.
First it can be shown that it is asymptotically optimal with respect to any stationary and
ergodic finite order Markov source (Rissanen [12]). Moreover, Feder shows thatLZ is also
universal in a worst case sense with respect to the (offline) benchmark class of all finite
state prediction machines. To summarize, the common approach to devising PS algorithms
has been to attempt and learn winners using winner learning schemes.

3 The Anticor Algorithm

We propose a different approach, motivated by theCBAL “philosophy”. How can we inter-
pret the success of the uniformCBAL on the Cover and Gluss example of Sec. 1? Clearly,
the uniformCBAL here is taking advantage of price fluctuation by constantly transferring
wealth from the high performing stock to the anti-correlated low performing stock. Even
in a less contrived market, we should be able to take advantage when a stock is currently
outperforming other stocks especially if this strong performance is anti-correlated with the
performance of these other stocks. OurANTICORw algorithm considers a short market his-
tory (consisting of two consecutive “windows”, each ofw trading days) so as to model
statistical relations between each pair of stocks. Let

LX1 = log(xt−2w+1), . . . , log(xt−w)T and LX2 = log(xt−w+1), . . . , log(xt)T ,

where log(xk) denotes(log(xk(1)), . . . , log(xk(m))). Thus,LX1 and LX2 are the two
vector sequences (equivalently, twow ×m matrices) constructed by taking the logarithm
over the market subsequences corresponding to the time windows[t − 2w + 1, t − w]
and [t − w + 1, t], respectively. We denote thejth column of LXk by LXk(j). Let
µk = (µk(1), . . . , µk(m)), be the vectors of averages of columns ofLXk (that is,
µk(j) = E{LXk(j)}). Similarly, letσk, be the vector of standard deviations of columns
of LXk. The cross-correlation matrix (and its normalization) between column vectors in
LX1 andLX2 are defined as:

Mcov(i, j) = (LX1(i)− µ1(i))T (LX2(j)− µ2(j));

Mcor(i, j)
{

Mcov(i,j)
σ1(i)σ2(j)

σ1(i), σ2(j) 6= 0;
0 otherwise.

Mcor(i, j) ∈ [−1, 1] measures the correlation between log-relative prices of stocki over
the first window and stockj over the second window. For each pair of stocksi andj we
computeclaimi→j , the extent to which we want to shift our investment from stocki to
stockj. Namely, there is such aclaim iff µ2(i) > µ2(j) andMcor(i, j) > 0 in which case
claimi→j = Mcor(i, j) + A(i) + A(j) whereA(h) = |Mcor(h, h)| if Mcor(h, h) < 0,
else 0. Following our interpretation for the success of aCBAL, Mcor(i, j) > 0 is used
to predict that stocksi and j will be correlated in consecutive windows (i.e. the cur-
rent window and the next window based on the evidence for the last two windows) and
Mcor(h, h) < 0 predicts that stockh will be anti-correlated with itself over consec-
utive windows. Finally,bt+1(i) = b̃t(i) +

∑
j 6=i[transferj→i − transferi→j ] where

transferi→j = b̃t(i) · claimi→j/
∑

j claimi→j and b̃t is the resulting portfolio just af-
ter market closing (on dayt).
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Figure1: ANTICORw ’s total return (per $1 investment) vs. window size2 ≤ w ≤ 30 for
NYSE (left) and SP500 (right).

Our ANTICORw algorithm has one critical parameter, the window sizew. In Figure 1 we
depict the total return ofANTICORw on two historical datasets as a function of the window
sizew = 2, . . . , 30. As we might expect, the performance ofANTICORw depends signifi-
cantly on the window size. However, for allw, ANTICORw beats the uniform market and,
moreover, it beats the best stock using most window sizes. Of course, in online trading we
cannot choosew in hindsight. Viewing theANTICORw algorithms as experts, we can try to
learn the best expert. But the windows, like individual stocks, induce a rather volatile set
of experts and standard expert combination algorithms [13] tend to fail.

Alternatively, we can adaptively learn and invest in some weighted average of allANTICORw

algorithms withw less than some maximumW . The simplest case is a uniform invest-
ment on all the windows; that is, a uniform buy-and-hold investment on the algorithms
ANTICORw, w ∈ [2,W ], denoted byBAHW (ANTICOR). Figure 2 (left) graphs the total return
of BAHW (ANTICOR) as a function ofW for all values of2 ≤ W ≤ 50 with respect to the
NYSE dataset (see details below). Similar graphs for the other datasets we consider appear
qualitatively the same and the choiceW = 30 is clearly not optimal. However, for all
W ≥ 3, BAHW (ANTICOR) beats the best stock in all our experiments.
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Figure 2: Left: BAHW (ANTICOR)’s total return (per $1 investment) as a function of the
maximal windowW . Right: Cumulative returns for last month of the DJIA dataset: stocks
(left panel); ANTICORw algorithms trading the stocks (denotedANTICOR1, middle panel);
ANTICORw algorithms trading theANTICOR algorithms (right panel).

Since we now consider the various algorithms as stocks (whose prices are determined by



the cumulative returns of the algorithms), we are back to our original portfolio selection
problem and if theANTICOR algorithm performs well on stocks it may also perform well on
algorithms. We thus consider active investment in the variousANTICORw algorithms using
ANTICOR. We again consider all windowsw ≤ W . Of course, we can continue to compound
the algorithm any number of times. Here we compound twice and then use a buy-and-hold
investment. The resulting algorithm is denotedBAHW (ANTICOR(ANTICOR)). One impact
of this compounding, depicted in Figure 2 (right), is to smooth out the anti-correlations
exhibited in the stocks. It is evident that after compounding twice the returns become
almost completely correlated thus diminishing the possibility that additional compounding
will substantially help.5 This idea for eliminating critical parameters may be applicable in
other learning applications. The challenge is to understand the conditions and applications
in which the process of compounding algorithms will have this smoothing effect!

4 Experimental Results

We present an experimental study of the theANTICOR algorithm and the three online learn-
ing algorithms described in Sec. 2. We focus onBAH30(ANTICOR), abbreviated byANTI1

and BAH30(ANTICOR(ANTICOR)), abbreviated byANTI2. Four historical datasets are used.
The first NYSE dataset, is the one used in [3, 2, 8, 14]. This dataset contains 5651 daily
prices for 36 stocks in the New York Stock Exchange (NYSE) for the twenty two year pe-
riod July3rd, 1962 to Dec31st, 1984. The second TSE dataset consists of 88 stocks from
the Toronto Stock Exchange (TSE), for the five year period Jan4th, 1994 to Dec31st,
1998. The third dataset consists of the 25 stocks from SP500 which (as of Apr. 2003) had
the largest market capitalization. This set spans 1276 trading days for the period Jan2nd,
1998 to Jan31st, 2003. The fourth dataset consists of the thirty stocks composing the Dow
Jones Industrial Average (DJIA) for the two year period (507 days) from Jan14th, 2001 to
Jan14th, 2003.6

These four datasets are quite different in nature (the market returns for these datasets appear
in the first row of Table 1). While every stock in the NYSE increased in value, 32 of the
88 stocks in the TSE lost money, 7 of the 25 stocks in the SP500 lost money and 25 of
the 30 stocks in the “negative market” DJIA lost money. All these sets include only highly
liquid stocks with huge market capitalizations. In order to maximize the utility of these
datasets and yet present rather different markets, we also ran each market in reverse. This
is simply done by reversing the order and inverting the relative prices. The reverse datasets
are denoted by a ‘-1’ superscript. Some of the reverse markets are particularly challenging.
For example,all of the NYSE−1 stocks are going down. Note that the forward and reverse
markets (i.e.U-BAH) for the TSE are both increasing but that the TSE−1 is also a challenging
market since so many stocks (56 of 88) are declining.

Table 1 reports on the total returns of the various algorithms for all eight datasets. We see
that prediction algorithms such asLZ can do quite well but the more aggressiveANTI1 and
ANTI2 have excellent and sometimes fantastic returns. Note that these active strategies beat
the best stock and evenCBAL∗ in all markets with the exception of the TSE−1 in which
they still significantly outperform the market. The reader may well be distrustful of what
appears to be such unbelievable returns forANTI1 and ANTI2 especially when applied to
the NYSE dataset. However, recall that the NYSE dataset consists ofn = 5651 trading
days and they such thatyn = the total NYSE return is approximately 1.0029511 forANTI1

(respectively, 1.0074539 forANTI2); that is, the average daily increase is less than .3%

5This smoothing effect also allows for the use of simple prediction algorithms such as “expert
advice” algorithms [13], which can now better predict a good window size. We have not explored
this direction.

6The four datasets, including their sources and individual stock compositions can be downloaded
from http://www.cs.technion.ac.il/∼rani/portfolios.



(respectively, .75%). Thus a transaction cost of 1% can present a significant challenge
to such active trading strategies (see also Sec. 5). We observe thatUNIVERSAL and EG

have no substantial advantage overU-CBAL. Some previous expositions of these algorithms
highlighted particular combinations of stocks where the returns significantly outperformed
UNIVERSAL and the best stock. But the same can be said forU-CBAL.

Algorithm NYSE TSE SP500 DJIA NYSE−1 TSE−1 SP500−1 DJIA−1

MARKET (U-BAH) 14.49 1.61 1.34 0.76 0.11 1.67 0.87 1.43
BEST STOCK 54.14 6.27 3.77 1.18 0.32 37.64 1.65 2.77
CBAL∗ 250.59 6.77 4.06 1.23 2.86 58.61 1.91 2.97
U-CBAL 27.07 1.59 1.64 0.81 0.22 1.18 1.09 1.53
ANTI1 17,059,811.56 26.77 5.56 1.59 246.22 7.12 6.61 3.67
ANTI2 238,820,058.10 39.07 5.88 2.28 1383.78 7.27 9.69 4.60
LZ 79.78 1.32 1.67 0.89 5.41 4.80 1.20 1.83
EG 27.08 1.59 1.64 0.81 0.22 1.19 1.09 1.53
UNIVERSAL 26.99 1.59 1.62 0.80 0.22 1.19 1.07 1.53

Table 1: Monetary returns in dollars (per $1 investment) of various algorithms for four
different datasets and their reversed versions. The winner and runner-up for each market
appear in boldface. All figures are truncated to two decimals.

5 Concluding Remarks

When handling a portfolio ofm stocks our algorithm may perform up tom transac-
tions per day. A major concern is therefore the commissions it will incur. Within
the proportional commissionmodel (see e.g. [14] and [15], Sec. 14.5.4) there exists
a fraction γ ∈ (0, 1) such that an investor pays at a rate ofγ/2 for each buy and
for each sell. Therefore, the return of a sequenceb1, . . . ,bn of portfolios with re-

spect to a market sequencex1, . . . ,xn is
∏

t

(
bt · xt(1−

∑
j

γ
2 |bt(j)− b̃t(j)|)

)
, where

b̃t = 1
bt·xt

(bt(1)xt(1), . . . ,bt(m)xt(m)). Our investment algorithm in its simplest form
can tolerate very small proportional commission rates and still beat the best stock.7 We
note that Blum and Kalai [14] showed that the performance guarantee ofUNIVERSAL still
holds (and gracefully degrades) in the case of proportional commissions. Many current
online brokers only charge a small per share commission rate. A related problem that one
must face when actually trading is the difference between bid and ask prices. These bid-ask
spreads(and the availability of stocks for both buying and selling) are typically functions
of stock liquidity and are typically smaller for large market capitalization stocks. We con-
sider here only very large market cap stocks. As a final caveat, we note that we assume
that any one portfolio selection algorithm has no impact on the market! But just like any
goose laying golden eggs, widespread use will soon lead to the end of the goose; that is,
the market will quickly react.

Any report of abnormal returns using historical markets should be suspected of “data
snooping”. In particular, when a dataset is excessively mined by testing many strategies
there is a substantial chance that one of the strategies will be successful by simple over-
fitting. Another data snooping hazard is stock selection. For example, the 36 stocks se-
lected for the NYSE dataset were all known to have survived for 22 years. OurANTICOR

algorithms were fully developed using only the NYSE and TSE datasets. The DJIA and
SP500 sets were obtained (from public domain sources) after the algorithms were fixed.
Finally, our algorithm has one parameter (the maximal window sizeW ). Our experiments
indicate that the algorithm’s performance is robust with respect toW (see Figure 2).

7For example, withγ = 0.1% we can typically beat the best stock. These results will be presented
in the full paper.



A number of well-respected works report on statistically robust “abnormal” returns for
simple “technical analysis” heuristics, which slightly beat the market. For example, the
landmark study of Brocket al. [16] apply 26 simple trading heuristics to the DJIA index
from 1897 to 1986 and provide strong support for technical analysis heuristics. While
consistentlybeating the market is considered a great (if not impossible) challenge, our
approach to portfolio selection indicates that beating the best stock is an achievable goal.
What is missing at this point of time is an analytical model which better explains why
our active trading strategies are so successful. In this regard, we are investigating various
“statistical adversary” models along the lines suggested by [17, 18]. Namely, we would
like to show that an algorithm performs well (relative to some benchmark) for any market
sequence that satisfies certain constraints on its empirical statistics.
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