Dynamical Modeling with Kernelsfor Nonlinear
Time Series Prediction

Liva Ralaivola Florence d’Alché-Buc
Laboratoire d’Informatique de Paris 6 Laboratoire d’Informatique de Paris 6
Université Pierre et Marie Curie Université Pierre et Marie Curie
8, rue du capitaine Scott 8, rue du capitaine Scott
F-75015 Paris, FRANCE F-75015 Paris, FRANCE
liva.ral ai vol a@i p6.fr florence. dal che@i p6. fr
Abstract

We consider the question of predicting nonlinear time series. Kernel Dy-
namical Modeling (KDM), a new method based on kernels, is proposed
as an extension to linear dynamical models. The kernel trick is used
twice: first, to learn the parameters of the model, and second, to compute
preimages of the time series predicted in the feature space by means of
Support Vector Regression. Our model shows strong connection with the
classic Kalman Filter model, with the kernel feature space as hidden state
space. Kernel Dynamical Modeling is tested against two benchmark time
series and achieves high quality predictions.

1 Introduction

Prediction, smoothing and filtering are traditional tasks applied to time series. The machine
learning community has recently paid a lot of attention to these problems and especially
to nonlinear time series prediction in various areas such as biological signals, speech or
financial markets. To cope with non linearities, extensions of the Kalman filter [5, 4] have
been proposed for filtering and smoothing while recurrent artificial neural networks [2] and
support vector regressors [7, 8] have been developed for prediction purposes. In this paper,
we focus on prediction tasks and introduce a powerful method based on the kernel trick
[1], which has been successfully used in tasks ranging from classification and regression
to data analysis (see [13, 15] for details). Time series modeling is addressed by extending
the framework of observable linear dynamical systems [12] to the feature space defined
by a kernel. The predictions are realized in the feature space and are then transformed to
obtain the corresponding preimages in the input space. While the proposed model could
be used for smoothing as well as filtering, we here focus on the prediction task. A link to
the Kalman filter can be drawn by noticing that given the efficiency of our model for the
prediction task it can be used as a hidden transition process in the Kalman filter setting.

The paper is organized as follows. In the next section, we describe how the modeling of
a time series can take place in the feature space and explain how to solve the preimage
problem by a learning strategy. In the third section, we present prediction results achieved
by our model In the fourth section, the estimation algorithm is discussed and its link to the
Kalman filter is highlighted. We finally conclude by giving some perspectives to our work.



2 Principles of Dynamical Modeling with Kernels

2.1 Basic Formulation

The problem we address is that of modeling d-dimensional nonlinear real-valued time se-
ries defined as

Xt41 = h(Xt) +u (1)
from an observed sequence x;.r = {x1,...,xr} produced by this model, where h is a
(possibly unknown) nonlinear function and u a noise vector.

Modeling such a series can be done with the help of recurrent neural networks [2] or
support vector machines [7]. In this work, we instead propose to deal with this prob-
lem by extending linear dynamical modeling thanks to the kernel trick. Instead of con-
sidering the observation sequence xi.7 = {xi1,...,xr}, We consider the sequence

x‘f:T = {¢(x1),...,6(x7)}, where ¢ is a mapping from R? to H and k its associated

kernel function [15] such that k(vy,va) = (¢(v1), #(va)) Vvi,va € RY, (-, -) being the
inner product of H. The Kernel Dynamical Model (KDM) obtained can be written as:

xX{p = A%{ + p? + 07 &)

where A is the process transition matrix, p® an offset vector, v¥ € H a gaussian isotropic
noise of magnitude o2 and x¢ stands for ¢(x;).

We are going to show that it is possible to apply the maximum likelihood principle to iden-
tify o2, A? and . and come back to the input space thanks to preimages determination.

2.2 Estimation of the Model Parameters

Learning the parameters of the model (2) by maximum likelihood given an observation
sequence x{.,, merely consists in optimizing the associated log-likelihood £¢(x{ ., 8%)*:

£¢(XT:T§0¢) = ( Xl HP |Xt 1 )
T
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where p is the dimension of H, g(uf, E‘f) is a function straightforward to compute which

we let aside as it does not add any complexity in setting the gradient of £¢ to 0. Indeed,
performing this task leads to the equations:
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19? := {A% u®, 02, u?, 7}, and uf and ¢ are the parameters of the gaussian vector x¢.



which require to address two problems: inverting a matrix which could be of infinite
dimension (e.g., if a gaussian kernel is used) and/or singular (equation (3)) and making a
division by the dimension of the feature space (p in equation (5)).

A general solution to circumvent these problems is to introduce an orthonormal basis U =
{uf,...,u%} for the subspace H, of M spanned by x{.,.. For instance, U can be obtained

by computing the set of principal components with non-zero eigenvalues of xf:T following
the procedure proposed in [6]. Once such a set of vectors is available, trying to find good
parameters for the model (2) is equivalent to finding an m-dimensional linear dynamical
model for the sequence z1.7 = {z1,...,zr} where z, is the vector of coordinates of xf
with respectto U, i.e.

!
7= |t uf) (xf ug) - (cug) | V=1, T (6)

Given z,.7, the following linear dynamical model has to be considered:
Ziy] = AZZt + M, + v, (7)

where v, is again a gaussian noise vector of variance 2. Determining a basis of 7, allows
to learn the linear dynamical model (7). As it is based on the coordinates of the observed

vectors xf, e x? with respect to the basis, it is equivalent to learning (2). The parameters

are estimated thanks to equations (3), (4) and (5) where xf’ is replaced with z; and p with
m.

For the sake of generalization ability, it might be useful to choose A, as simple as possible
[15]. To do this, we put a penalization on matrices A, having large values, by imposing
a prior distribution p4 on A, defined as: pa(A.) o< exp(—3 trace (ALA.)), v > 0. The
computation of the maximum a posteriori values for A, p and o2 is very similar to (3), (4)
and (5) except that a few iterations of gradient ascent have to be done.

2.3 Back to the Input Space: the Preimage Problem

The problem Predicting the future observations with model (7) gives vectors in the fea-
ture space H while vectors from the input space R? are needed. Given a vector z? in H,
finding a good vector x in R such that ¢(x) is as close as possible to z? is known as the
preimage problem.

Mika et al. [6] propose to tackle this problem considering the optimization problem:

min () — 2%

This problem can be solved efficiently by gradient descent techniques for gaussian kernels.
Nevertheless, it may require several optimization phases with different starting points to be
ran when other kernels are used (e.g. polynomial kernels of some particular degree).

Here, we propose to use Support Vector Regression (SVR) to solve the preimage problem.
This avoids any local minimum problem and allows to benefit from the fact that we have to
work with vectors from the inner product space H. In addition, using this strategy, there is
no need to solve an optimization problem each time a preimage has to be computed.

SVR and Preimages Learning Given a sample dataset S = {(z1,91),.-.,(z¢,y¢)}
with pairs in Z x R, the SVR algorithm assumes a structure on Z given by a kernel &k,
and its associated mapping ¢ and feature space H (see [15]). It proceeds as follows (see
[14] and [15] for further details). Given a real positive value &, the algorithm determines
a function f such that (a) it maps each z; to a value not having deviation larger than ¢



from y;, and (b) it is as flat as possible. This function computes its output as f(z) =
Zle (af — )k (z;,2) + b where the vectors a* and « are the solutions of the problem

max —'(a*+a)+y(a" —a)-— %((a* —a)Kz(a" —a) + %(a*/a* +da))

st l(a*—a)=0
- a*>0, a>0

The vectors involved in this program are of dimension ¢, with1 =[1---1]",0=[0---0]’,
e=le---elyy = [y1- -y and Kz is the Gram matrix K z;; = k.(z;,z;). Here, ¢ is
the parameter of the Vapnik’s e-insensitive quadratic loss function and C'is a user-defined
constant penalizing data points which fail to meet the e-deviation constraint.

In our case, we are interested in learning the mapping from H, to R%. In order to learn this
mapping, we construct d (the dimension of input space) SVR machines f1, ..., fq. Each f;
is trained to estimate the ;** coordinate of the vector x, given the coordinates vector z, of
x; With respect to U. Denoting by z,, the function which maps a vector x to its coordinate
vector z in U, the d machines provide the mapping :

X [fl(zu(x))fd(zu(x))}/ (8)

which can be used to estimate the preimages. Using ¢, and noting that the program involved
by the SVR algorithm is convex, the estimation of the preimages does not have to deal with
any problem of local minima.

3 Numerical Results

In this section we present experiments on highly nonlinear time series prediction with
Kernel Dynamical Modeling. As the two series we consider are one dimensional we
use the following setup. Each series of length T is referred to as xq.7. In order to
model it, we introduce an embedding dimension d and a step size x such that vectors
X¢ = (@4, T¢—p, .-, Ts_(a—1)x) are considered. We compare the perfomances of KDM
to the performances achieved by an SVR for nonlinear time series analysis [7, 8], where
the mapping associating x; to z.y, is learned. The hyperparameters (kernel parameter
and SVR penalization constant C') are computed with respect to the one-step prediction
error measured on a test set, while the value of ¢ is set to le-4. Prediction quality is as-
sessed on an independent validation sequence on which root mean squared error (RMSE)
is computed.

Two kinds of prediction capacity are evaluated. The first one is a one-step prediction when
after a prediction has been made, the true value is used to estimate the next time series
output. The second one is a multi-step or trajectory prediction, where the prediction made
by a model serves as a basis for the future predictions.

In order to make a prediction for a time ¢ > 7', we suppose that we are provided with the
vector x;_1, which may have been observed or computed. We determine the coordinates
z;_1 Of xf’fl with respect to U and infer the value of z; by z, = A,z; 1 + p. (See
equation (7)); v is then used to recover an estimation of x;; (cf. equation (8)). In all our
experiments we have made the crude —yet efficient— choice of the linear kernel for % ..
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Figure 1: (left) 100 points of the Mackey-Glass time series M G17, (right) the first 350
points of the Laser time series.

Table 1: Error (RMSE) of one-step and trajectory predictions for gaussian and polynomial
kernels for the time series M G17. The regularizing values used for KDM are in subscript.
The best results are italicized.

Gaussian Polynomial
Algo. 1S 100S 1S 100S
SVR 0.0812 0.2361 0.1156

KDMg 0.0864 0.2906 0.1112 0.2975
KDMy.; 0.0863 0.2893 0.1112 0.2775
KDM; 0.0859 0.2871 0.1117 0.2956
KDM;,  0.0844 0.2140 0.1203 0.1964
KDMjgp 0.0899 0.1733 0.0970 0.1744

3.1 Mackey-Glass Time Series Prediction

The Mackey-Glass time series comes from the modeling of blood cells production evolu-
tion. It is a one-dimensional signal determined by

dx(t) 0.2z(t — )
dt 1+ z(t—7)10
which, for values of 7 greater than 16.8, shows some highly nonlinear chaotic behavior
(see Figure 1 left).

= —0.1x(t) +

We focus on MG, for which 7 = 17, and construct embedding vectors of size d = 6
and step size k = 6. As x; is used to predict x;, ., the whole dataset can be divided
into six “independent” datasets, the first one S; containing x; (4—1), the second one S,
X24(d—1)xs ---» and the sixth one Sg, x4,. Learning is done as follows. The first 100
points of &; are used to learning, while the first 100 points of S serve to choose the
hyperparameters. The prediction error is measured with respect to the points in the range
201 to 300 of S;.

Table 1 reports the RMSE error obtained with gaussian and polynomial kernels, where 1S
and 100S respectively stand for one-step prediction and multi-step prediction over the 100
future observations.

SVR one-step prediction with gaussian kernel gives the best RMSE. None of the tested
regularizers allows KDM to perform better, even if the prediction error obtained with them
is never more than 10% away from SVR error.



Table 2: Error (RMSE) of one-step and trajectory predictions for gaussian and polynomial
kernels for the time series Laser. The regularizing values used for KDM are in subscript.

Gaussian Polynomial
Algo. 1S 100s 1S  100S
SVR 1581 6757 18.14 66.73

KDMy 6795 416.2 43.92 68.90
KDMp.; 16.59 69.65 2237 69.60
KDM; 1396 70.16 18.13 70.65
KDM;, 15.18 66.82 17.39 69.43
KDMjopo 18.65 56.53 17.61 53.84

KDM trajectory prediction with gaussian kernel and regularizer v = 100 leads to the best
error. It is around 17% lower than that of SVR multi-step prediction while KDM with no
regularizer gives the poorest prediction, emphasizing the importance of the regularizer.

Regarding one-step prediction with polynomial kernel, there is no significant difference
between the performance achieved by SVR and that of KDM, when regularizer is 0, 0.1, 1
or 10. For a regularizer v = 100, KDM however leads to the best one-step prediction error,
around 16% lower than that obtained by SVR prediction.

The dash ’-” appearing in the first line of the table means that the trajectory prediction made
by the SVR with a polynomial kernel has failed to give finite predictions. On the contrary,
KDM never shows this kind of behavior. For a regularizer value of v = 100, it even gives
the best trajectory prediction error.

3.2 Laser Time Series Prediction

The Laser time series is the dataset A from the Santa Fe competition. It is a univariate time
series from an experiment conducted in a physics laboratory (Figure 1 (right) represents
the first 350 points of the series). An embedding dimension d = 3 and a step size k = 1
are used. The dataset is divided as follows. The first 100 points are used for training,
whereas the points in the range 201 to 300 provide a test set to select hyperparameters. The
validation error (RMSE) is evaluated on the points in the range 101 to 200.

Table 2 reports the validation errors obtained for the two kinds of prediction. The most
striking information provided by this table is the large error archieved by KDM with no
regularizer when a gaussian kernel is used. Looking at the other RMSE values correspond-
ing to different regularizers, the importance of penalizing transition matrices with large
entries is underlined.

Besides, when the regularizer ~ is appropriately chosen, we see that KDM with a gaussian
kernel can achieve very good predictions, for the one-step prediction and the multi-step
prediction as well. KDM one-step best prediction error is however not as far from SVR
one-step prediction (about 10% lower) than KDM multi-step is from its SVR counterpart
(around 16% lower).

When a polynomial kernel is used, we observe that KDM with no regularizer provides poor
results with regards to the one-step prediction error. Contrary to what occurs with the use
of a gaussian kernel, KDM with no regularization does not show bad multi-step prediction
ability. Looking at the other entries of this table once again shows that KDM can give
very good predictions when a well-suited regularizer is chosen. Hence, we notice that the
best multi-step prediction error of KDM is above 19% better than that obtained by SVR



multi-step prediction.

4 Discussion

4.1 Another Way of Choosing the Parameters

The introduction of a basis U allows to find the parameters of KDM without computing
any inversion of infinite dimensional matrices or division by the dimension of H. There

is, however a more elegant way to find these parameters when o2 is assumed to be known.
In this case, equation (5) needs not to be considered any longer. Considering the prior

pa(A?) o exp(—52; trace (A%’ A?)), for a user defined ~, the maximum a posteriori for
A? is obtained as:

T 1 T T

/ /

AT = <§ x{x{_ T § Xf§ xf1)
t=2 t=2

t=2
o / 1 « a AN
('VIWL ZX?—1XZ5—1 “T_1 ZX?—I fo—l > :

t=2 t=2 t=2
Introducing the matrix X¢ = [x{ - -x?], the T-dimensional vectors f := [0 1---1]/,
g:=[1---10],the T x TmatrixP (Pij) = (8 j+1) defining J = P —fg/(T — 1)
and M = diag (g) — gg’/(T — 1), A? can be rewritten as

1
A® = (X¢JX¢ ) (71+ XM X? )

_ 1X¢J {I—KM(I+ L MEM) 1M] x¢'

thanks to the Sherman—Woodbury formula, K being the Gram matrix associated to x ... It

is thus possible to directly determine the matrix A® when o2 is known, the same holding
for u? since equation (5) remains unchanged.

4.2 Link to Kalman Filtering

The usual way to recover a noisy nonlinear signal is to use the Extended Kalman Filter
(EKF) or the Unscented Kalman Filter (UKF) [4]. The use of these algorithms involves
two steps. First, the clean dynamics, as given by A in equation (1) is learned by a regressor,
e.g., a multilayer perceptron. Given a noisy time series from the same driving process h,
EKF and UKF then process that series by respectively a first-order linearization of i and
an efficient ’sampling’” method to determine the clean signal. Apart from the latter essential
approximations done by these algorithms, the core of EKF and UKF resembles that of
classical Kalman filtering (and smoothing).

Regarding the performances of KDM to learn a complex dynamics, it could be directly used
to model the process h. In addition, its matricial formulation is suitable to the traditional
matrices computations involved by the filtering task (see [5, 11] for details). Hence, a link
between KDM and Kalman filtering has been the purpose of [9, 10] where a nonlinear
Kalman filter based on the use of kernels is proposed: the ability of the proposed model to
address the modeling of nonlinear dynamics is demonstrated, while the classical procedures
(even the EM algorithm) associated to linear dynamical systems remain valid.

5 Conclusion and Future Work

Three main results are presented: first, we introduce KDM, a kernel extension of linear
dynamical models and show how the kernel trick allows to learn a linear model in a feature



space associated to a kernel. Second, an original and efficient solution based on learning
has been applied for the preimage problem. Third, Kernel Dynamical Model can be linked
to the Kalman filter model with a hidden state process living in the feature space.

In the framework of time series prediction, KDM proves to work very well and to compete
with the best time series predictors particularly on long time range prediction.

To conclude, this work can lead to several future directions. All classic tasks involving a
dynamic setting such as filtering/predicting (e.g., tracking) and smoothing (e.g., time series
denoising) can be tackled by our approach and have to be tested. As pointed out by [9, 10],
the kernel approach can also be applied to linear dynamical models with hidden states to
provide a kernelized version of the Kalman filter, particularly allowing the implementation
of an exact nonlinear EM procedure (involving closed form equations as the method pro-
posed by [3]). Besides, the use of kernel opens the door to dealing with structured data,
making KDM a very attractive tool in many areas such as bioinformatics, texts and video
application. Lastly, from the theoretical point of view, a very interesting issue is that of the
actual noise corresponding to a gaussian noise in a feature space.
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