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Abstract

We investigate improvements of AdaBoost that can exploit the fact
that the weak hypotheses are one-sided, i.e. either all its positive
(or negative) predictions are correct. In particular, for any set
of m labeled examples consistent with a disjunction of k literals
(which are one-sided in this case), AdaBoost constructs a consistent
hypothesis by using O(k%logm) iterations. On the other hand,
a greedy set covering algorithm finds a consistent hypothesis of
size O(klogm). Our primary question is whether there is a simple
boosting algorithm that performs as well as the greedy set covering.
We first show that InfoBoost, a modification of AdaBoost pro-
posed by Aslam for a different purpose, does perform as well as
the greedy set covering algorithm. We then show that AdaBoost
requires Q(k?logm) iterations for learning k-literal disjunctions.
We achieve this with an adversary construction and as well as in
simple experiments based on artificial data. Further we give a vari-
ant called SemiBoost that can handle the degenerate case when the
given examples all have the same label. We conclude by showing
that SemiBoost can be used to produce small conjunctions as well.

1 Introduction

The boosting method has become a powerful paradigm of machine learning. In this
method a highly accurate hypothesis is built by combining many “weak” hypotheses.
AdaBoost [FS97, SS99] is the most common boosting algorithm. The protocol is as
follows. We start with m labeled examples labeled with +1. AdaBoost maintains
a distribution over the examples. At each iteration ¢, the algorithm receives a +1
valued weak hypothesis h; whose error (weighted by the current distribution on the
examples) is slightly smaller than % It then updates its distribution so that after
the update, the hypothesis h; has weighted error exactly % The final hypothesis is
a linear combination of the received weak hypotheses and it stops when this final
hypothesis is consistent with all examples.

It is well known [SS99] that if each weak hypothesis has weighted error at most

% — 2, then the upper bound on the training error reduces by a factor of \/1 — 2
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and after O(,YL2 log m) iterations, the final hypothesis is consistent with all examples.

Also, it has been shown that if the final hypotheses are restricted to (unweighted)
majority votes of weak hypotheses [Fre95], then this upper bound on the number
of iterations cannot be improved by more than a constant factor.

However, if there always is a positively one-sided weak hypothesis (i.e. its positive
predictions are always correct) that has error! at most % — 3, then a set cover algo-

rithm can be used to reduce the training error by a factor? of 1 —~ and O(% logm)

weak hypotheses suffice to form a consistent hypothesis [Nat91]. In this paper
we show that the improved factor is also achieved by InfoBoost, a modification of
AdaBoost developed by Aslam [Asl00] based on a different motivation.

In particular, consider the problem of finding a consistent hypothesis for m examples
labeled by a k literal disjunction. Assume we use the literals as the pool of weak
hypotheses and always choose as the weak hypothesis a literal that is consistent
with all negative examples. Then it can be shown that, for any distribution D on
the exarr}plesl, there exists a literal (or a constant hypothesis) h with weighted error

at most 5 — 5 (See e.g. [MG92]). Therefore, the upper bound on the training error

of AdaBoost reduces by a factor of /1 — ﬁ and O(k?logm) iterations suffice.

However, a trivial greedy set covering algorithm, that follows a strikingly similar
protocol as the boosting algorithms, finds a consistent disjunction with O(klogm)
literals. We show that InfoBoost mimics the set cover algorithm in this case (and
attains the improved factor of 1 — 7).

We first explain the InfoBoost algorithm in terms of constraints on the updated
distribution. We then show that Q(k?logm) iterations are really required by Ad-
aBoost using both an explicit construction (which requires some assumptions) and
artificial experiments. The differences are quite large: For m = 10,000 random
examples and a disjunction of size k = 60, AdaBoost requires 2400 iterations (on
the average), whereas Covering and InfoBoost require 60 iterations. We then show
that InfoBoost has the improved reduction factor if the weak hypotheses happen
to be one-sided. Finally we give a modified version of AdaBoost that exploits the
one-sidedness of the weak hypotheses and avoids some technical problems that can
occur with InfoBoost. We also discuss how this algorithm can be used to construct
small conjunctions.

2 Minimizing relative entropy subject to constraints

Assume we are given a set of m examples (21,¥1), ..., (Zm,Ym). The instances x;
are in some domain X and the labels y; are in {—1,1}. The boosting algorithms
maintain a distribution D; over the examples. The initial distribution is D and is
typically uniform. At the t-th iteration, the algorithm chooses a weak® hypothesis
he : X — {—1,1} and then updates its distribution. The most popular boosting
algorithm does this as follows:

Dy (i) exp{—yihi(z;)a: }
Zy ’

!This assumes equal weight on both types of examples.

2Wipe out the weights of positive examples that are correctly classified and re-balance
both types of examples.

3For the sake of simplicity we focus on the case when the range of the labels and the
weak hypotheses is +1 valued. Many parts of this paper generalize to the range [—1,1]
[SS99, Asl00].

AdaBoost: D;11(i) =




Here Z; is a normahzatlon constant and the coefficient «a; depends on the error
at iteration ¢: ay = 3 In 16“ and ¢, = Prp,[h(x;) # y;]. The final hypothesis is
given by the sign of the followmg linear combination of the chosen weak hypotheses:
H(z) = Zt:l ahi(z). Following [KW99, Laf99], we motivate the updates on the
distributions of boosting algorithms as a constraint minimization of the relative
entropy between the new and old distributions:

AdaBoost: Dt+1 = argminDe[O,l]mi:iD(i)zlA(D,Dt), s.t. %r[ht(xl) 7é yz] = =

Here the relative entropy is defined as A(D, D) = 3, D(i)In 5 (i) and error w.r.t.
the updated distribution is constraint to half.

The constraint can be easily understood using the table of i \ hy | 41  —1

Figure 1. There are two types of misclassified examples: +1 a b
false positive (weight c) and false negative (weight b). The -1 c d
AdaBoost constraint means b + ¢ = % w.r.t. the updated Figure 1: Four types
distribution D;. of examples.

The second boosting algorithm we discuss in this paper has the following update:

Dy (i) exp{—yihi(w;)ou[he ()]}
Iy ’

InfoBoost: Dy (i) =

where ay[+1] = JIn il e [£1] = Prp,[he(z:) # yilhi(e:) = 1] and Z, is

the normalization factor. The final hypothesis is given by the sign of H(z) =
iy alhe(@)] he(a).

In the original paper [Asl00], the InfoBoost update was motivated by seeking a
distribution D,y for which the error of h; is half and y; and h;(x;) have mutual
information zero. Here we motivate InfoBoost as a minimization of the same relative

entropy subject to the AdaBoost constraint b+ ¢ = % and a second simultaneously
enforced constraint a + b = % Note that the second constraint is the AdaBoost
constraint w.r.t. the constant hypothesis 1. A natural question is why not just do
two steps of AdaBoost at each iteration ¢: One for h; and and then, sequentially,
one for 1. We call the latter algorithm AdaBoost with Bias, since the constant
hypothesis introduces a bias into the final hypothesis. See Figure 2 for an example

of the different updates.

Yi \ ht +1 -1 Yi \ ht +1 -1

D, : +1 2 % D;;1: AdaB. +1 3 %
yi \he | +1 -1 i \ he | +1 —1

Dy, : InfoB. +1 0 % Dy, 1 : AdaB.w.Bias +1 % %
-1 0 3 -1 0 %

Figure 2: Updating based on a positively one-sided hypothesis h; (weight ¢ is 0):
The updated distributions on the four types of examples are quite different.

We will show in the next section that in the case of learning disjunctions, AdaBoost
with Bias (and plain AdaBoost) can require many more iterations than InfoBoost
and the trivial covering algorithm. This is surprising because the AdaBoost with
Bias and InfoBoost seem so similar to each other (simultaneous versus sequential



enforcement of the same constraints). A natural extension would be to constrain
the errors of all past hypotheses to half which is the Totally Corrective Algorithm
of [KW99]. However this can lead to subtle convergence problems (See discussion
in [RW02]).

3 Lower bounds of AdaBoost for Learning £ disjunctions

So far we did not specify how the weak hypothesis h; is chosen at iteration ¢. We
assume there is a pool H of weak hypotheses and distinguish two methods:
Greedy: Choose a h; € H for which the normalization factor Z; in the update of
the algorithm is minimized.

Minimal: Choose h; with error smaller than a given threshold % —9.

The greedy method is motivated by the fact that [[, Z; upper bounds the training
error of the final hypothesis ([SS99, Asl00]) and this method greedily minimizes this
upper bound. Note that the Z; factors are different for AdaBoost and InfoBoost.

In our lower bounds on the number of iterations the example set is always con-
sistent with a k-literal monotone disjunction over N variables. More precisely the
instances x; are in {:tl}N and the label y; is x; 1 Vz; 2 V...V, ;. The pool of weak
learners consists of the N literals X;, where X,(x;) = x;;. For the greedy method
we show that on random data sets InfoBoost and the covering algorlthm use drasti-
cally fewer iterations than AdaBoost with Bias.
We chose 10,000 examples as follows: The first 1z
k bits of each example are chosen independently
at random so that the probability of label +1 is
half (i.e. the probability of +1 for each of the
first k bits is 1 —27/%); the remaining N — k ir-
relevant bits of each example are chosen +1 with
probability half. Figure 3 shows the number of
iterations as function of the size of disjunction &
(averaged over 20 runs) of AdaBoost with Bias TR TmL s ks
until consistency is reached on all 10,000 exam- Figure 3: Average # of steps
ples. The number of iteration in this very simple of AdaBoost with Bias for k& =
setting grows quadratically with k. If the num- 10,20, 30, 40, 50, 60.

ber of iterations is divided by k2 then the resulting curve is larger than a constant.
In contrast the number of iterations of the greedy covering algorithm and InfoBoost
is provably linear in k: For k = 60 and m = 10, 000, the former require 60 iterations
on the average, whereas AdaBoost with Bias with the greedy choice of the weak
hypothesis requires 1200 even though it never chooses irrelevant variables as weak
learners (Plain AdaBoost requires twice as many iterations).
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The above construction is not theoretical. However we now give an explicit con-
struction for the minimal method of choosing the weak hypothesis for which the
number of iterations of greedy covering and InfoBoost grow linearly in k£ and the
number of iterations of AdaBoost with Bias is quadratic in k.

For any dimension N we define an example set which is the rows of the following
(N +1) x N dimensional matrix @: All entries on the main diagonal and above are
+1 and the remaining entries —1. In particular, the last row is all —1 (See Figure
4). The i-th instance x; is the i-th row of this matrix and the first N examples
(rows) are labeled +1 and the label of the last row yy11 is —1.

Clearly the literal X is consistent with the labels and thus always has error 0
w.r.t. any distribution on the examples. But note that the disjunction of the last &k



literals is also consistent (for any k). We will construct a distribution on the rows
that gives high probability to the early rows (See Figure 4) and allows the following
”minimal” choice of weak hypotheses: At iteration ¢, AdaBoost with Bias is given
the weak hypothesis X;. This weak hypothesis will have error 1 — ﬁ (6= ﬁ) w.r.t.

2
current distribution of the examples.

Contrary to our construction, the initial distribution for boosting applications is
typically uniform. However, using padding this can be avoided but makes the con-
struction more complicated. For any precision parameter € € (0, 1) and disjunction
size k, we define the dimension

—Int—-In(1-14% 2
N | n(z ) +12%ln2i_§
In (1~ ) e
The initial distribution D; is defined as
1
2k e fort=1
1 1 2
Dy(xy) := ¢ kE+D (1-7) (1—m> , for2<t<N-1
% - iv;ll D(z,), fort =N
2 for t=N + 1.

The example &y has the lowest probability w.r.t. D; (See Figure 4). However one
can show that its probability is at least e.

D (z;) Ti,j Yi
+ + + + + +

:'D - 4+ + + + +

0 - - 4+ + + +

0 - - - + + +

l - - - + + +

| - - - - + +
1 - - - - - —

Figure 4: The examples (rows of the matrix), the labels, and the distribution D;.
Also for t < N — 1, the probability Dj(x<;) of the first ¢ examples is

t—1
% {1 — (1 — %) (1 — ﬁ) } AdaBoost with Bias does two update steps at

iteration t (constrain the error of h; to half and then sequentially the error of 1 to
half.)

D. (i) exp{—yiht(x;)a: } and Dyyy — D, (%) QXE{_yi&t}.

Dy(i) =
t() Zt Zt

The Z’s are normalization factors, oy = 2 In1=%t and &, = L In Di@<n) e final
2 Et Dt(zN+1)

1
2

hypothesis is the sign of the following linear combination: H(x) = Zle athy(x) +

Sy G

Proposition 1. For AdaBoost with Bias and t < N, Prp, [Xi(x;) # vi] =

1_ 1

27 2%
Proof. (Outline) Since each literal X} is one-sided, X; classifies the negative example
zn+1 correctly. Since Prp, [Xy(x;) = y;] = Dy(@n41)+Di(®<;) and Dy(wy41) = &



it suffices to show that Dy(w<;) = 5 for ¢ < N. The proof is by induction on ¢.
For t = 1, the statement follows from the definition of D;. Now assume that the
statement holds for any ¢’ < ¢. Then we have

—Qp—1 O
e~ Qt—1 pOt—1

Di(x<t) = Di(x<i—1) + Di(21) = Dp—1(2<i-1) 7
t— t—1

Note that the example x; is not covered by any previous hypotheses Xi,..., X;_1,
and thus we have

t—1 o
eaj Qi

Dt(.’.ﬂt) = Dl(:ct) — = (2)
j[[l Zj Z;

Using the inductive assumption that Prp , [Xy (2;) # yi] = % — 2k, for t’ < t, one

can show that oy = 1In ,l?}, Zy = 3/ (k=1)(k+1), Et’(wSN =3+ 2(k+1)’

Dy(Tns1) = i - m7 ay = 2In &2 and Zy = k%rl\/k:(k:—i—2). Substituting
these values into the formulae (1 ) and (2), completes the proof. O

Theorem 2. For the described examples set, initial distribution Dy, and mini-
mal choice of weak hypotheses, AdaBoost with Bias needs at least N iterations to
construct a final hypothesis whose error with respect to Dy is below €.

Proof. Let t be any integer smaller than N. At the end of the iteration ¢, the
examples x;11,...,xy are not correctly classified by the past weak hypotheses
X1,...,X¢. In particular, the final linear combination evaluated at xy is

t

t
Han) =3 0 Xm0 5 = - Ya +Z%:i L

j=1 j=1 j=1 j=1

Thus sign(H(xy)) = —1 and the final hypothesis has error at least Dy(xn) > €
with respect to D;. O

To show a similar lower bound for plain AdaBoost we use the same example set and
the following sequence of weak hypotheses X1,1, X5,1,... Xn,1. For odd 1tcrat10n
1

numbers ¢ the above proposition shows the error of the weak hypothesis is 5 — —k and

for even iteration numbers one can show that the hypothesis 1 has error % 5 k1+1).

4 InfoBoost and SemiBoost for one-sided weak hypotheses

Aslam proved the following upper bound on the training error[Asl00] of InfoBoost:

Theorem 3. The training error of the ﬁnal hypothesis produced by InfoBoost is

bounded by Ht 1 Zs, where Zy = Prp, [h(x;) = +1]3/1 — %[+1]2 + Prp, [he(x;) =
—1]3/1 — 1[-1]? and edge* v[£1] = 1 — 2g[+1].

Let v = 1 — 2g4. If y[+1] = 4[~1] = v, then Z; = /1 —~Z, as for AdaBoost.
However, if h; is one-sided, InfoBoost gives the improved factor of /1 — ;:

Corollary 4. Fort > 2, if hy is one-sided w.r.t. Dy, then Z; = /1 — ;.

1

4The edge v and error € are related as follows: v = 1—2¢ and ¢ = %— %; e=5<7=0.



Proof. Wlog. assume h; is always correct when it predicts +1. Then y;[+1] = 1 and
the first summand in the expression for Z; given in the above theorem disappears.
Recall that InfoBoost maintains the distribution D; over examples so that Prp,[y; =
+1] = 1 for t > 2. So the second summand becomes

2\/Pr [hi(x;) = —1,y; = +1] Pr[ht(xi) =-1,y; = —1]

= 2\/P1" y; = +1] Pr \/Pr [hi(x;) = =1y, = +1] gr[ht(xi) = —1y; = —1]

=./P ) = —1|y; = +1].
\/Df ht afz |CUL + }
By the definition of ~;, we have

1 — v = 2Prp, [hy(z:) # yil
= 2Prp, [he(x;) = =1,y; = +1] (because of one-sidedness of hy)
= 2Prp,[yi = +1] Drfhe(w:) = — 1|y = +1]

= Prp,[hi(x;) = —1|yi = +1] (because Prp,[y; = +1] = 3) O

This corollary implies that if a one-sided hypothesis is chosen at each iteration,
then InfoBoost constructs a final hypothesis consistent with all m examples within
%lnm iterations. When the considered weak hypotheses are positively one-sided,

then the trivial greedy covering algorithm (which simply chooses the set that covers
the most uncovered positive examples), achieves the improved factor of 1 —+~, which
means at most + Inm iterations. By a careful analysis (not included), one can show

that the factor for InfoBoost can be improved to 1 — ~, if all weak hypotheses are
one-sided. So in this case InfoBoost indeed matches the 1 — ~ factor of the greedy
covering algorithm.

A technical problem arises when InfoBoost is given a set of examples that are
all labeled +1. Then we have aj[+1] = oo and a;[—1] = —oco. This implies
H(z) = aq[h1(z;)]he(x;) = oo for any instance z;. Thus InfoBoost terminates in
a single iteration and outputs a hypothesis that predicts +1 for any instance and
InfoBoost cannot be used for constructing a cover.

We propose a natural way to cope with this subtlety. Recall that the final hy-
pothesis of InfoBoost is given by H(z) = Zthl ai[hi(x)] hi(x). This doesn’t
seem to be a linear combination of hypotheses from H since the coefficients vary
with the prediction of weak hypotheses. However observe that a:[h:(x)] hi(z) =
a[+1] hf (2) + au[—1] h; (z), where h* = h(z) if h(z) = £1 and 0 otherwise.
We call h* and h~ the semi hypotheses of h. Note that h™(z) = % and

h™(x) = % So the final hypothesis of InfoBoost and the new algorithm we
will define in a moment is a bias plus a linear combination of the the original weak

learners in H.

We propose the following variant of AdaBoost (called Semi-Boost): In each iteration
execute one step of AdaBoost but the chosen weak hypothesis must be a semi
hypothesis of one of the original hypothesis h € H which has a positive edge.
SemiBoost avoids the outlined technical problem and can handle equally labeled
example sets. Also if all the chosen hypotheses are of the h* type then the final
hypothesis is a disjunction. If hypotheses are chosen by smallest error (largest
edge), then the greedy covering algorithm is simulated. Analogously, if all the
chosen hypotheses are of the h™ type then one can show that the final hypothesis of
SemiBoost is a conjunction. Furthermore, two steps of SemiBoost (with hypothesis
h* in the first step followed by the sibling hypothesis A~ in the second step) are
equivalent to one step of InfoBoost with hypothesis h.



Finally we note that the final hypothesis of InfoBoost (or SemiBoost) is not well-
defined when it includes both types of one-sided hypotheses, i.e. positive and neg-
ative infinite coefficients may conflict each other. We propose two solutions. First,

following [SS99] one can use the modified coefficients a[+1]’ = 1 1n % for

small A > 0. Tt can be shown that the new Z’ increases by at most v/2A([SS99]).
Second, we allow infinite coefficients but interpret the final hypothesis as a version
of a decision list [Riv87]: Whenever more than one semi hypotheses with infinite
coefficients are non-zero on the current instance, then the semi hypothesis with the
lowest iteration number determines the label. Once such a consistent decision list
over some set of hypothesis h; and 1 has been found, it is easy the find an alternate
linear combination of the same set of hypotheses (using linear programming) that
maximizes the margin or minimizes the one-norm of the coefficient vector subject
to consistency.

Conclusion: We showed that AdaBoost can require significantly more iterations
than the simple greedy cover algorithm when the weak hypotheses are one-sided
and gave a variant of AdaBoost that can readily exploit one-sidedness. The open
question is whether the new SemiBoost algorithm gives improved performance on
natural data and can be used for feature selection.
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