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Abstract

A recent area of significant progress in speaker recognition is the use
of high level features—idiolect, phonetic relations, prosody, discourse
structure, etc. A speaker not only has a distinctive acoustic sound but
uses language in a characteristic manner. Large corpora of speech data
available in recent years allow experimentation with long term statistics
of phone patterns, word patterns, etc. of an individual. We propose the
use of support vector machines and term frequency analysis of phone se-
quences to model a given speaker. To this end, we explore techniques
for text categorization applied to the problem. We derive a new kernel
based upon a linearization of likelihood ratio scoring. We introduce a
new phone-based SVM speaker recognition approach that halves the er-
ror rate of conventional phone-based approaches.

1 Introduction

We consider the problem of text-independent speaker verification. That is, given a claim of
identity and a voice sample (whose text content is a priori unknown), determine if the claim
is correct or incorrect. Traditional speaker recognition systems use features based upon the
spectral content (e.g., cepstral coefficients) of the speech. Implicitly, these systems model
the vocal tract and its associated dynamics over a short time period. These approaches have
been quite successful, see [1, 2].

Traditional systems have several drawbacks. First, robustness is an issue because chan-
nel effects can dramatically change the measured acoustics of a particular individual. For
instance, a system relying only on acoustics might have difficulty confirming that an in-
dividual speaking on a land-line telephone is the the same as an individual speaking on
a cell phone [3]. Second, traditional systems also rely upon seemingly different methods
than human listeners [4]. Human listeners are aware of prosody, word choice, pronuncia-
tion, accent, and other speech habits (laughs, etc.) when recognizing speakers. Potentially
because of this use of higher level cues, human listeners are less affected by variation in
channel and noise types than automatic algorithms.

An exciting area of recent development pioneered by Doddington [5] is the use of “high
level” features for speaker recognition. In Doddington’s idiolect work, word N-grams from
conversations were used to characterize a particular speaker. More recent systems have
used a variety of approaches involving phone sequences [6], pronunciation modeling [7],



and prosody [8]. For this paper, we concentrate on the use of phone sequences [6]. The
processing for this type of system uses acoustic information to obtain sequences of phones
for a given conversation and then discards the acoustic waveform. Thus, processing is done
at the level of terms (symbols) consisting of, for example, phones or phone N-grams.

This paper is organized as follows. In Section 2, we discuss the NIST extended data speaker
recognition task. In Section 3.1, we present a method for obtaining a phone stream. Sec-
tion 3.2 shows the structure of the SVM phonetic speaker recognition system. Section 4
discusses how we construct a kernel for speaker recognition using term weighting tech-
niques for document classification. We derive a new kernel based upon a linearization of
a likelihood ratio. Finally, Section 5 shows the applications of our methods and illustrates
the dramatic improvement in performance possible over standard phone-based N-gram
speaker recognition methods.

2 TheNIST extended data task

Experiments for the phone-based speaker recognition experiments were performed based
upon the NIST 2003 extended data task [9]. The corpus used was a combination of phases
I1 and 111 of the Switchboard-2 corpora [10].

Each potential training utterance in the NIST extended data task consisted of a conversation
side that was nominally of length 5 minutes recorded over a land-line telephone. Each
conversation side consisted of a speaker having a conversation on a topic selected by an
automatic operator; conversations were typically between unfamiliar individuals.

For training and testing, a jacknife approach was used to increase the number of tests.
The data was divided into 10 splits. For training, a given split contains speakers to be
recognized (target speakers) and impostor speakers; the remaining splits could be used
to construct models describing the statistics of the general population—a “background”
model. For example, when conducting tests on split 1, splits 2-10 could be used to construct
a background.

Training a speaker model was performed by using statistics from 1, 2, 4, 8, or 16 conver-
sation sides. This simulated a situation where the system could use longer term statistics
and become “familiar” with the individual; this longer term training allows one to explore
techniques which might mimic more what human listeners perceive about an individual’s
speech habits. A large number of speakers and tests were available; for instance, for 8 con-
versation training, 739 distinct target speakers were used and 11, 171 true trialsand 17, 736
false trials were performed. For additional information on the training/testing structure we
refer to the NIST extended data task description [9].

3 Speaker Recognition with Phone Sequences

3.1 Phone Sequence Extraction

Phone sequence extraction for the speaker recognition process is performed using the
phone recognition system (PPRLM) designed by Zissman [11] for language identification.
PPRLM uses a mel-frequency cepstral coefficient front end with delta coefficients. Each
phone is modeled in a gender-dependent context-independent (monophone) manner using
a three-state hidden Markov model (HMM). Phone recognition is performed with a Viterbi
search using a fully connected null-grammar network of monophones; note that no explicit
language model is used in the decoding process.

The phone recognition system encompassed multiple languages—English (EG), German
(GE), Japanese (JA), Mandarin (MA), and Spanish (SP). In earlier phonetic speaker recog-



nition work [6], it was found that these multiple streams were useful for improving accu-
racy. The phone recognizers were trained using the OGI multilanguage corpus which had
been hand labeled by native speakers.

After a “raw” phone stream was obtained from PPRLM, additional processing was per-
formed to increase robustness. First, speech activity detection marks were used to eliminate
phone segments where no speech was present. Second, silence labels of duration greater
than 0.5 seconds were replaced by “end start” pairs. The idea in this case is to capture some
of the ways in which a speaker interacts with others—does the speaker pause frequently,
etc. Third, extraneous silence was removed at the beginning and end of the resulting seg-
ments. Finally, all phones with short duration were removed (less than 3 frames).

3.2 Phonetic SVM System

Our system for speaker recognition using phone sequences is shown in Figure 1. The sce-
nario for its usage is as follows. An individual makes a claim of identity. The system then
retrieves the SVM maodels of the claimed identity for each of the languages in the system.
Speech from the individual is then collected (a test utterance). A phone sequence is derived
using each of the language phone recognizers and then post-processing is performed on the
sequence as discussed in Section 3.1. After this step, the phone sequence is vectorized by
computing frequencies of N-grams—this process will be discussed in Section 4. We call
this term calculation since we compute term types (unigram, bigram, etc.), term probabili-
ties and weightings in this step [12]. This vector is then introduced into a SVM using the
speaker’s model in the appropriate language and a score per language is produced. Note
that we do not threshold the output of the SVM. These scores are then fused using a linear
weighting to produce a final score for the test utterance. The final score is compared to a
threshold and a reject or accept decision is made based upon whether the score was below
or above the threshold, respectively.

An interesting aspect of the system in Figure 1 is that it uses multiple streams of phones
in different languages. There are several reasons for this strategy. First, the system can be
used without modification for speakers in multiple languages. Second, although not obvi-
ous, from experimentation we show that phone streams different from the language being
spoken provide complimentary information for speaker recognition. That is, accuracy im-
proves with these additional systems. A third point is that the system may also work in other
languages not represented in the phone streams. It is known that in the case of language
identification, language characterization can be performed even if a phone recognizer is not
available in that particular language [11].

EG phone Phone Post- Term EG Speaker
recognizer Processing Calculation Model SVM

GE phone Phone Post- Term GE Speaker
recognizer Processing Calculation Model SVM

SP phone Phone Post- Term SP Speaker
recognizer Processing Calculation Model SVM

Figure 1: Phonetic speaker recognition using support vector machines



Training for the system in Figure 1 is based upon the structure of the NIST extended data
corpus (see Section 2). We treat each conversation side in the corpus as a “document.” From
each of these conversation sides we derive a single (sparse) vector of weighted probabili-
ties. To train a model for a given speaker, we use a one-versus-all strategy. The speaker’s
conversations are trained to a SVM target value of +1. The conversations sides not in the
current split (see Section 2) are used as a background. That is, all conversation sides not in
the current split are used as the class for SVM target value of —1. Note that this strategy
ensures that speakers that are used as impostors are “unseen” in the training data.

4 Kernel Construction

Possibly the most important aspect of the process of phonetic speaker recognition is the
selection of the kernel for the SVM. Of particular interest is a kernel which will preserve
the identity cues a particular individual might present in their phone sequence. We describe
two steps for kernel construction.

Our first step of kernel construction is the selection of probabilities to describe the phone
stream. We follow the work of [5, 6]. The basic idea is to use a “bag of N-grams” approach.
For a phone sequence, we produce N-grams by the standard transformation of the stream;
e.g., for bigrams (2-grams) the sequence of phones, t1, ts, ..., t,, is transformed to the
sequence of bigrams of phones ¢ _to, t2_t3, ..., t,—1t,. We then find probabilities of N-
grams with N fixed. That is, suppose we are considering unigrams and bigrams of phones,
and the unique unigrams and bigrams are designated d;, ..., dy; and dy_dy, ... dp-dpg,
respectively; then we calculate probabilities and joint probabilities

N #Hte=di)
p(ds.d;) #(teti = di-d;)

B > H(tity = dy-di)

where #(t;, = d;) indicates the number of phones in the conversation side equal to d;, and
an analogous definition is used for bigrams. These probabilities then become entries in a
vector v describing the conversation side

v=[p(d) ... pldy) pldid) ... p(dada)]. 2)

In general, the vector v will be sparse since the conversation side will not contain all po-
tential unigrams, bigrams, etc.

A second step of kernel construction is the selection of the “document component” of
term weighting for the entries of the vector v in (2) and the normalization of the resulting
vector. By term weighting we mean that for each entry, v;, of the vector v, we multiply
by a “collection” (or background) component, w;, for that entry. We tried two distinct
approaches for term weighting.

TFIDF weighting. The first is based upon the standard TFIDF approach [12, 13]. From
the background section of the corpus we compute the frequency of a particular N-gram
using conversation sides as the item analogous to a document. l.e., if we let DF(¢t;) be the
number of conversation sides where a particular N-gram, ¢;, is observed, then our resulting
term-weighted vector has entries

©)

o # of conversation sides in background
Uy .
& DF(t;)

We follow the weighting in (3) by a normalization of the vector to unit length x — x/||x|| 2.



Log-likelihood ratio weighting. An alternate method of term weighting may be derived
using the following strategy. Suppose that we have two conversation sides from speakers,
spk; and spk,. Further suppose that the sequence of N-grams (for fixed N) in each con-
versation side is t1,t2, ..., t, and uy, us, ..., u,, respectively. We denote the unique set
of N-grams as d, ..., dp;. We can build a “model” based upon the conversation sides for
each speaker con5|st|ng of the probability of N-grams, p(dilspk;). We then compute the
likelihood ratio of the first conversation side as is standard in ver|f|cat|on problems [1]; a
linearization of the likelihood ratio computation will serve as the kernel. Proceeding,

n
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where we have made the assumption that the probabilities are independent. We then con-
sider the log of the likelihood ratio normalized by the number of observations,

n
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If we now “linearize” the log function in (5) by using log(z) ~ x — 1, we get
M
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Thus, (6) suggests we use a term weighting given by 1//p(d;[background). Note that the
strategy used for constructing a kernel is part of a general process of finding kernels based
upon training on one instance and testing upon another instance [2].

5 Experiments

Experiments were performed using the NIST extended data task “v1” lists (which encom-
pass the entire Switchboard 2 phase Il and I11 corpora). Tests were performed for 1, 2, 4, 8,
and 16 training conversations. Scoring was performed using the SVM system shown in Fig-
ure 1. Five language phone recognizers were used—English (EG), German (GE), Japanese
(JA), Mandarin (MA), and Spanish (SP). The resulting phone sequences were vectorized as
unigram and bigram probabilities (2). Both the standard TFIDF term weighting (3) and the
log-likelihood ratio (TFLLR) term weighting (6) methods were used. We note that when
a term did not appear in the background, it was ignored in training and scoring. A linear
kernel was used x - y + 1 to compare the vectors of term weights. Training was performed
using the SVMTorch package [14] with ¢ = 1. Comparisons of performance for different
strategies were typically done with 8 conversation training and English phone streams since
these were representative of overall performance.



Table 1: Comparison of different term weighting strategies, English only scores, 8 conver-
sation training

Term Weighting Method | EER
TFIDF 7.4%
TFLLR 5.2%

Results were compared via equal error rates (EERs)—the error at the threshold which pro-
duces equal miss and false alarm probabilities, P.;ss = Pr.. Table 1 shows the results
for two different weightings, TFIDF (3) and TFLLR (6), using English phones only and 8
training conversations. The table illustrates that the new TFLLR weighting method is more
effective. This may be due to the fact the IDF is too “smooth”; e.g., for unigrams, the IDF is
approximately 1 since a unigram almost always appears in a given 5 minute conversation.
Also, alternate methods of calculating the TF component of TFIDF have not been explored
and may yield gains compared to our formulation.

We next considered the effect on performance of the language of the phone stream for
the 8 conversation training case. Figure 2 shows a DET plot (a ROC plot with a special
scale [15]) with results corresponding to the 5 language phone streams. The best perform-
ing system in the figure is an equal fusion of all scores from the SVM outputs for each lan-
guage and has an EER of 3.5%; other fusion weightings were not explored in detail. Note
that the best performing language is English, as expected. Note, though, as we indicated in
Section 3.1 that other languages do provide significant speaker recognition information.
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Figure 2: DET plot for the 8 conversation training case with varying languages and TFLLR
weighting. The plot shows in order of increasing EER—fused scores, EG, MA, GE, JA, SP



Table 2: Comparison of equal error rates (EERS) for different conversation training lengths
using the TFLLR phonetic SVM and the standard log likelihood ratio (LLR) method

# Training SVMEER | LLR EER | SVM EER
Conversations Reduction
1 13.4% 21.8% 38%
2 8.6% 14.9% 42%
4 5.3% 10.3% 49%
8 3.5% 8.8% 60%
16 2.5% 8.3% 70%
40 | N :
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Figure 3: DET plot for 8 conversation training showing a comparison of the SVM approach
(solid line) to the standard log likelihood ratio approach using bigrams (dash-dot line) and
the standard log likelihood ratio approach using trigrams (dashed line)

Table 2 shows the effect of different training conversation lengths on the EER. As expected,
more training data leads to lower error rates. We also see that even for 1 training conversa-
tion, the SVM system provides significant speaker characterization ability. Figure 3 shows
DET plots comparing the performance of the standard log likelihood ratio method [6] to
our new SVM method using the TFLLR weighting. We show log likelihood results based
on both bigrams and trigrams; in addition, a slightly more complex model involving dis-
counting of probabilities is used. One can see the dramatic reduction in error, especially
apparent for low false alarm probabilities. The EERs of the standard system are 8.8% (tri-

grams, see Table 2) and 10.4% (bigrams), whereas our new SVVM system produces an EER
of 3.5%; thus, we have reduced the error rate by 60%.



6 Conclusionsand future work

An exciting new application of SVMs to speaker recognition was shown. By computing
frequencies of phones in conversations, speaker characterization was performed. A new
kernel was introduced based on the standard method of log likelihood ratio scoring. The
resulting SVM method reduced error rates dramatically over standard techniques.
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