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Abstract 

This paper presents an energy normalization transform as a 
method to reduce system errors in the LF-ASD brain-computer 
interface.  The energy normalization transform has two major 
benefits to the system performance. First, it can increase class 
separation between the active and idle EEG data.  Second, it 
can desensitize the system to the signal amplitude variability. 
For four subjects in the study, the benefits resulted in the 
performance improvement of the LF-ASD in the range from 
7.7% to 18.9%, while for the fifth subject, who had the highest 
non-normalized accuracy of 90.5%, the performance did not 
change notably with normalization. 

1  Introduction 

In an effort to provide alternative communication channels for people who suffer 
from severe loss of motor function, several researchers have worked over the past 
two decades to develop a direct Brain-Computer Interface (BCI).  Since 
electroencephalographic (EEG) signal has good time resolution and is non-invasive, 
it is commonly used for data source of a BCI. A BCI system converts the input EEG 
into control signals, which are then used to control devices like computers, 
environmental control system and neuro-prostheses. 

Mason and Birch [1] proposed the Low-Frequency Asynchronous Switch Design 
(LF-ASD) as a BCI which detected imagined voluntary movement-related potentials 
(IVMRPs) in spontaneous EEG. The principle signal processing components of the 
LF-ASD are shown in Figure 1. 
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Figure 1: The original LF-ASD design. 

The input to the low-pass filter (LPF), denoted as SIN in Figure 1, are six bipolar 
EEG signals recorded from F1-FC1, Fz-FCz, F2-FC2, FC1-C1, FCz-Cz and  
FC2-C2 sampled at 128 Hz. The cutoff frequency of the LPF implemented by Mason 
and Birch was 4 Hz. The Feature Extractor of the LF-ASD extracts custom features 
related to IVMRPs. The Feature Classifier implements a one-nearest-neighbor (1-
NN) classifier, which determines if the input signals are related to a user state of 
voluntary movement or passive (idle) observation.  The LF-ASD was able to 
achieve True Positive (TP) values in the range of 44%-81%, with the corresponding 
False Positive (FP) values around 1% [1]. 

Although encouraging, the current error rates of the LF-ASD are insufficient for 
real-world applications. This paper proposes a method to improve the system 
performance. 

2  Design and Rationale  

The improved design of the LF-ASD with the Energy Normalization Transform 
(ENT) is provided in Figure 2. 
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Figure 2:  The improved LF-ASD with the Energy Normalization Transform. 

The design of the Feature Extractor and Feature Classifier were the same as shown 
in Figure 1. The Energy Normalization Transform (ENT) is implemented as 

 

where WN (normalization window size) is the only parameter in the equation. The 
optimal parameter value was obtained by exhaustive search for the best class 
separation between active and idle EEG data. The method of obtaining the active 
and idle EEG data is provided in Section 3.1. 

The idea to use energy normalization to improve the LF-ASD design was based 
primarily on an observation that high frequency power decreases significantly 
around movement. For example, Jasper and Penfield [3] and Pfurtscheller et al, [4] 
reported EEG power decrease in the mu (8-12 Hz) and beta rhythm (18-26 Hz) when 
people are involved in motor related activity. Also Mason [5] found that the power 
in the frequency components greater than 4Hz decreased significantly during 
movement-related potential periods, while power in the frequency components less 
than 4Hz did not. Thus energy normalization, which would increase the low 
frequency power level, would strengthen the 0-4 Hz features used in the LF-ASD 
and hence reduce errors. In addition, as a side benefit, it can automatically adjust the 
mean scale of the input signal and desensitize the system to change in EEG power, 
which is known to vary over time [2]. Therefore, it was postulated that the addition 
of ENT into the improved design would have two major benefits. First, it can 
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increase the EEG power around motor potentials, consequently increasing the class 
separation and feature strength. Second, it can desensitize the system to amplitude 
variance of the input signal. 

In addition, since the system components of the modified LF-ASD after the ENT 
were the same as in the original design, a major concern was whether or not the 
ENT distorted the features used by the LF-ASD. Since the features used by the LF-
ASD are generated from the 0-4 Hz band, if the ENT does not distort the phase and 
magnitude spectrum in this specific band, it would not distort the features related to 
movement potential detection in the application. 

3  Evaluation 

3 .1  Test  da ta  

Two types of EEG data were pre-recorded from five able-bodied individuals as 
shown in Figure 3.  Active Data Type and Idle Data Type. Active Data was recorded 
during repeated right index finger flexions alternating with periods of no motor 
activity; Idle Data was recorded during extended periods of passive observation. 

 
Figure 3: Data Definition of M1, M2, Idle1 and Idle2. 

Observation windows centered at the time of the finger switch activations (as shown 
in Figure 4) were imposed in the active data to separate data related to movements 
from data during periods of idleness. For purpose of this study, data in the front part 
of the observation window was defined as M1 and data in the rear part of the 
window was defined as M2. Data falling out of the observation window was defined 
as Idle2.  All the data in the Idle Data Type was defined as Idle1 for comparison 
with Idle2. 

 
Figure 4:  Ensemble Average of EEG centered on finger activations. 

 



 

 
Figure 5:  Density distribution of Idle1, Idle2, M1 and M2. 

It was noted, in terms of the density distribution of active and idle data, the 
separation between M2 and Idle2 was the largest and Idle1 and Idle2 were nearly 
identical (see Figure 5). For the study, M2 and Idle2 were chosen to represent the 
active and idle data classes and the separation between M2 and Idle2 data was 
defined by the difference of means (DOM) scaled by the amplitude range of Idle2. 

3 .2  Opt imal  parameter  de terminat ion  

The optimal combination of normalization window size, WN, and observation 
window size, WO was selected to be that which achieved the maximal DOM value. 
This was determined by exhaustive search, and discussed in  
Section 4.1. 

3 .3  Effec t  o f  ENT on  the  Low Pass  F i l t er  output  

As mentioned previously, it was postulated that the ENT had two major impacts: 
increasing the class separation between active and idle EEG and desensitizing the 
system to the signal amplitude variance. The hypothesis was evaluated by 
comparing characteristics of SNLPF and SLPF in Figure 1 and Figure 2. DOM was 
applied to measure the increased class separation. The signal with the larger DOM 
meant larger class separation. In addition, the signal with smaller standard deviation 
may result in a more stable feature set. 

3 .4  Effec t  o f  ENT on  the  LF-ASD output  

The performances of the original and improved designs were evaluated by 
comparing the signal characteristics of SNFC in Figure 2 to SFC in Figure 1. A 
Receiver Operating Characteristic Curve (ROC Curve) [6] was generated for the 
original and improved designs. The ROC Curve characterizes the system 
performance over a range of TP vs. FP values. The larger area under ROC Curve 
indicates better system performance. In real applications, a BCI with high-level FP 
rates could cause frustration for subjects. Therefore, in this work only the LF-ASD 
performance when the FP values are less than 1% were studied. 

4  Results  

4 .1  Opt imal  normal iza t ion  window s ize  (W N )  

The method to choose optimal WN was an exhaustive search for maximal DOM 
between active and idle classes. This method was possibly dependent on the 
observation window size (WO). However, as shown in Figure 6a, the optimal WN 
was found to be independent of WO. Experimentally, the WO values were selected in 
the range of 50-60 samples, which corresponded to largest DOM between non-
normalized active and idle data. The optimal WN was obtained by exhaustive search 



 

for the largest DOM through normalized active and idle data. The DOM vs. WN 
profile for Subject 1 is shown in Figure 6b. 

 
a)      b) 

Figure 6:  Optimal parameter determination for Subject 1 in Channel 1 
a) DOM vs. WO;  b) DOM vs. WN. 

When using ENT, a small WN value may cause distortion to the feature set used by 
the LF-ASD. Thus, the optimal WN was not selected in this range (< 40 samples). 
When WN is greater than 200, the ENT has lost its capability to increase class 
separation and the DOM curve gradually goes towards the best separation without 
normalization. Thus, the optimal WN should correspond to the maximal DOM value 
when WN is in the range from 40 to 200. In Figure 6b, the optimal WN is around 51.  

4 .2  Effec t  o f  ENT on  the  Low Pass  F i l t er  output   

With ENT, the standard deviation of the low frequency EEG signal decreased from 
around 1.90 to 1.30 over the six channels and over the five subjects. This change 
resulted in more stable feature sets. Thus, the ENT desensitizes the system to input 
signal variance. 

 
a)              b) 

Figure 7:  Density distribution of the active vs. idle class without   
(a) and with (b) ENT, for Subject 1 in Channel 1. 

As shown in Figure 7, by increasing the EEG power around motor potentials, ENT 
can increase class separations between active and idle EEG data. The class 
separation in (frontal) Channels 1-3 across all subjects increased consistently with 
the proposed ENT. The same was true for (midline) Channels 4-6, for all subjects 
except Subject 5, whose DOM in channel 5-6 decreased by 2.3% and 3.4% 
respectively with normalization. That is consistent with the fact that his EEG power 
in Channels 4-6 does not decrease. On average, across all five subjects, DOM 
increases with normalization to about 28.8%, 26.4%, 39.4%, 20.5%, 17.8% and 
22.5% over six channels respectively. 

In addition, the magnitude and phase spectrums of the EEG signal before and after 
ENT is provided in Figure 8. The ENT has no visible distortion to the signal in the 
low frequency band (0-4 Hz) used by the LF-ASD. Therefore, the ENT does not 
distort the features used by the LF-ASD. 



 

(a) 

(b) 

Figure 8:  Magnitude and phase spectrum of the EEG signal before and after ENT. 

4 .3  Effec t  o f  ENT on  the  LF-ASD output   

The two major benefits of the ENT to the low frequency EEG data result in the 
performance improvement of the LF-ASD.  Subject 1’s ROC Curves with and 
without ENT is shown in Figure 9, where the ROC-Curve with ENT of optimal 
parameter value is above the ROC Curve without ENT. This indicates that the 
improved LF-ASD performs better. Table I compares the system performance with 
and without ENT in terms of TP with corresponding FP at 1% across all the 5 
subjects. 

 
Figure 9:  The ROC Curves (in the section of interest) of Subject 1 with different 

WN values and the corresponding ROC Curve without ENT. 
 
 
 
 
 
 
 
 



 

Table I:  Performance of the LF-ASD with and without LF-ASD in terms of 
 the True Positive rate with corresponding False Positive at 1%. 

 TP without 
ENT 

TP with 
ENT 

Performance 
Improvement 

Subject 1 66.1% 85.0% 18.9% 
Subject 2 82.7% 90.4% 7.7% 
Subject 3 79.7% 88.0% 8.3% 
Subject 4 79.3% 87.8% 8.5% 
Subject 5 90.5% 88.7% -1.8% 

 
For 4 out of 5 subjects, corresponding with the FP at 1%, the improved system with 
ENT increased the TP value by 7.7%, 8.3%, 8.5% and 18.9% respectively. Thus, for 
these subjects, the range of TP with FP at 1% was improved from 66.1%-82.7% to 
85.0%-90.4% with ENT. For the fifth subject, who had the highest non-normalized 
accuracy of 90.5%, the performance remained around 90% with ENT. In addition, 
this evaluation is conservative.  Since the codebook in the Feature Classifier and the 
parameters in the Feature Extractor of the LF-ASD were derived from non-
normalized EEG, they work in favor of the non-normalized EEG. Therefore, if the 
parameters and the codebook of the modified LF-ASD are generated from the 
normalized EEG in the future, the modified LF-ASD may show better performance 
than this evaluation. 

5  Conclusion 

The evaluation with data from five able-bodied subjects indicates that the proposed 
system with Energy Normalization Transform (ENT) has better performance than 
the original. This study has verified the original hypotheses that the improved 
design with ENT might have two major benefits: increased the class separation 
between active and idle EEG and desensitized the system performance to input 
amplitude variance. As a side benefit, the ENT can also make the design less 
sensitive to the mean input scale. 

In the broad band, the Energy Normalization Transform is a non-linear transform. 
However, it has no visible distortion to the signal in the 0-4 Hz band. Therefore, it 
does not distort the features used by the LF-ASD. 

For 4 out of 5 subjects, with the corresponding False Positive rate at 1%, the 
proposed transform increased the system performance by 7.7%, 8.3%, 8.5% and 
18.9% respectively in terms of True Positive rate. Thus, the overall performance of 
the LF-ASD for these subjects was improved from 66.1%-82.7% to 85.0%-90.4%. 
For the fifth subject, who had the highest non-normalized accuracy of 90.5%, the 
performance did not change notably with normalization. In the future with the 
codebook derived from the normalized data, the performance could be further 
improved.  
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