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Abstract

Principal components analysis (PCA) is one of the most widely used
techniques in machine learning and data mining. Minor components
analysis (MCA) is less well known, but can also play an important role
in the presence of constraints on the data distribution. In this paper we
present a probabilistic model for “extreme components analysis” (XCA)
which at the maximum likelihood solution extracts an optimal combina-
tion of principal and minor components. For a given number of compo-
nents, the log-likelihood of the XCA model is guaranteed to be larger or
equal than that of the probabilistic models for PCA and MCA. We de-
scribe an efficient algorithm to solve for the globally optimal solution.
For log-convex spectra we prove that the solution consists of principal
components only, while for log-concave spectra the solution consists of
minor components. In general, the solution admits a combination of both.
In experiments we explore the properties of XCA on some synthetic and
real-world datasets.

1 Introduction

The simplest and most widely employed technique to reduce the dimensionality of a data
distribution is to linearly project it onto the subspace of highest variation (principal compo-
nents analysis or PCA). This guarantees that the reconstruction error of the data, measured
with L2-norm, is minimized. For some data distributions however, it is not the directions of
large variation that are most distinctive, but the directions of very small variation, i.e. con-
strained directions. In this paper we argue that in reducing the dimensionality of the data,
we may want to preserve these constrained directions alongside some of the directions of
large variability.

The proposed method, termed “extreme components analysis” or XCA, holds the middle
ground between PCA and MCA (minor components analysis–the method that projects on
directions of low variability). The objective that determines the optimal combination of
principal and minor components derives from the probabilistic formulation of XCA, which
neatly generalizes the probabilistic models for PCA and MCA. For a fixed number of com-
ponents, the XCA model will always assign higher probability to the (training) data than
PCA or MCA, and as such be more efficient in encoding the data. We propose a very



simpleand efficient algorithm to extract the optimal combination of principal and minor
components and prove some results relating the shape of the log-spectrum to this solution.

The XCA model is inspired by Hinton’s “product of experts” (PoE) model [1]. In a
PoE, linear combinations of an input vector are penalized according to their negative log-
probability and act as constraints. Thus, configurations of high probability have most of
their constraints approximately satisfied. As we will see, the same is true for the XCA
model which can therefore be considered as an under-complete product of Gaussians
(PoG).

2 Variation vs. Constraint: PCA vs. MCA

Consider a plane embedded in3 dimensions that cuts through the origin. There are2
distinct ways to mathematically describe points in that plane:

x = Ay ∀ y ∈ R2, or ∀ x ∈ R3 s.t. wT x = 0 (1)

whereA is a3×2 matrix, the columns of which form a basis in the plane, andw is a vector
orthogonal to the plane. In the first description we parameterize the modes of variation,
while in the second we parameterize the direction ofno variationor the direction in which
the points are constrained. Note that we only need3 real parameters to describe a plane in
terms of its constraint versus6 parameters to describe it in terms of its modes of variation.
More generally, if we want to describe ad-dimensional subspace inD dimensions we may
useD − d constraint directions ord subspace directions.

Next consider the stochastic version of the above problem: find an accurate description
of an approximatelyd-dimensional data-cloud inD dimensions. The solution that prob-
abilistic PCA (PPCA) [3, 4] provides is to model thosed directions using unit vectorsai

(organized as columns of a matrixA) while adding isotropic Gaussian noise in all direc-
tions,

x = Ay + n y ∼ N [0, Id] n ∼ N [0, σ2
0ID] (2)

The probability density ofx is Gaussian with covariance

CPCA = 〈xxT 〉 = σ2
0ID + AAT . (3)

In [4] it was shown that at the maximum likelihood solution the columns ofA are given
by the firstd principal components of the data with length||ai|| =

√
σ2

i − σ2
0 whereσ2

i is
the i′th largest eigenvalue of the sample covariance matrix andσ2

0 is equal to the average
variance in the directions orthogonal to the hyperplane.

Alternatively, one may describe the data asD − d approximately satisfied constraints, em-
bedded in a high variance background model. The noisy version of the constraintwT x = 0
is given byz = wT x wherez ∼ N [0, 1]. The variance of the constrained direction,
1/||w||2, should be smaller than that of the background model. By multiplyingD − d of
these “Gaussian pancake” models [6] a probabilistic model for MCA results withinverse
covariance given by,

C−1
MCA =

ID

σ2
0

+ WT W (4)

wherewT form the rows ofW . It was shown that at the maximum likelihood solution the
rows ofW are given by the firstD − d minor components of the data with length||wi|| =√

1/σ2
i − 1/σ2

0 whereσ2
i is the i′th smallesteigenvalue of the sample covariance matrix

andσ2
0 is equal to the average variance in the directions orthogonal to the hyperplane. Thus,

while PPCA explicitly models the directions of large variability, PMCA explicitly models
the directions of small variability.



3 Extreme Components Analysis (XCA)

Probabilistic PCA can be interpreted as a low variance data cloud which has been stretched
out in certain directions. Probabilistic MCA on the other hand can be thought of as a
large variance data cloud which has been pushed inward in certain directions. Given the
Gaussian assumption, the approximation that we make is due to the fact that we replace the
variances in the remaining directions by their average. Intuitively, better approximations
may be obtained by identifying the set of eigenvalues which, when averaged, induces the
smallest error. The appropriate model, to be discussed below, will both have elongated and
contracted directions in its equiprobable contours, resulting in a mix of principal and minor
components.

3.1 A Probabilistic Model for XCA

The problem can be approached by either starting at the PPCA or PMCA model. The
restricting aspect of the PPCA model is that the noisen is added in all directions in input
space. Since adding random variables always results in increased variance, the directions
modelled by the vectorsai must necessarily have larger variance than the noise directions,
resulting in principal components. In order to remove that constraint we need to add the
noise only in the directions orthogonal to theai’s. This leads to the following “causal
generative model” model1 for XCA,

x = Ay + P⊥A n y ∼ N [0, Id] n ∼ N [0, σ2
0ID] (5)

whereP⊥A = ID−A(AT A)−1AT is the projection operator on the orthogonal complement
of the space spanned by the columns ofA. The covariance of this model is found to be

CXCA = σ2
0P⊥A + AAT . (6)

Approaching the problem starting at the PMCA model we start withd components{wi}
(organized as rows inW ) and add isotropic noise to the remaining directions,

z1 = Wx z1 ∼ N [0, Id] z2 = V x z2 ∼ N [0, σ2
0I(D−d)] (7)

where the rows ofV form an orthonormal basis in the orthogonal complement of the space
spanned by{wi}. Importantly, we will not impose any constraints on the norms of{wi}
or σ0, i.e. the components are allowed to model directions of large or small variance. To
derive the PDF we note that({z1i}, {z2i}) are independent random variables implying that
P (z1, z2) is a product of marginal distributions. This is then converted toP (x) by taking
into account the Jacobian of the transformationJ(z1,z2)→x =

√
det(WWT ). The result is

thatx has a Gaussian distribution with with inverse covariance,

C−1
XCA =

1
σ2

0

P⊥W + WT W (8)

whereP⊥W = ID − WT (WWT )−1W is the projection operator on the orthogonal com-

plement ofW . Also,det(C−1
XCA) = det(WWT )σ2(d−D)

0 .

It is now not hard to verify that by identifyingA = W# def= WT (WWT )−1 (the pseudo-
inverse ofW ) the two models defined through eqns. 6 and 8 are indeed identical. Thus,
by slightly changing the noise model, both PPCA and PMCA result in XCA (i.e. compare
eqns.3,4,6,8).

1Note however that the semantics of a two-layer directed graphical model is problematic since
p(x|y) is improper.



3.2 Maximum Likelihood Solution

For a centered (zero mean) dataset{x} of sizeN the log-likelihood is given by,

L = −ND

2
log(2π)+

N

2
log det(WWT )+

N(D − d)
2

log
(

1
σ2

0

)
−N

2
tr

(
C−1

XCAS
)

(9)

whereS = 1
N

∑N
i=1 xixT

i ∈ RD×D is the covariance of the data. To solve for the station-
ary points ofL we take derivatives w.r.tWT and1/σ2

0 and equate them to zero. Firstly, for
W we find the following equation,

W# − SWT +
1
σ2

0

P⊥W SW# = 0. (10)

Let WT = UΛRT be the singular value decomposition (SVD) ofWT , so thatU ∈ RD×d

forms an incomplete orthonormal basis,Λ ∈ Rd×d is a full-rank diagonal matrix, and
R ∈ Rd×d is a rigid rotation factor. Inserting this into eqn. 10 we find,

UΛ−1RT − SUΛRT +
1
σ2

0

(ID − UUT )SUΛ−1RT = 0. (11)

Next we note that the projections of this equation on the space spanned byW and its
orthogonal complement should hold independently. Thus, multiplying equation 11 on the
left by eitherPW orP⊥W , and multiplying it on the right byRΛ−1, we obtain the following
two equations,

UΛ−2 = UUT SU, (12)

SU

(
Id − Λ−2

σ2
0

)
= UUT SU

(
Id − Λ−2

σ2
0

)
. (13)

Insertingeqn. 12 into eqn. 13 and right multiplying with(Id − Λ−2/σ2
0)−1 we find the

eigenvalue equation2,
SU = UΛ−2. (14)

Inserting this solution back into eqn. 12 we note that it is satisfied as well. We thus conclude
thatU is given by the eigenvectors of the sample covariance matrixS, while the elements
of the (diagonal) matrixΛ are given byλi = 1/σi with σ2

i the eigenvalues ofS (i.e. the
spectrum).

Finally, taking derivatives w.r.t.1/σ2
0 we find,

σ2
0 =

1
D − d

tr
(
P⊥W S

)
=

1
D − d

(
tr(S)− tr(UΛ−2UT )

)
=

1
D − d

∑

i∈G
σ2

i (15)

whereG is the set of all eigenvalues ofS which arenot represented inΛ−2. The above
equation expresses the fact that these eigenvalues are being approximated through their
averageσ2

0 .

Inserting the solutions 14 and 15 back into the log-likelihood (eqn. 9) we find,

L = −ND

2
log(2πe)− N

2

∑

i∈C
log(σ2

i )− N(D − d)
2

log

(
1

D − d

∑

i∈G
σ2

i

)
(16)

whereC is the set of retained eigenvalues. The log-likelihood has now been reduced to a
function of the discrete set of eigenvalues{σ2

i } of S.

2As we will see later, the left-out eigenvalues have to be contiguous in the spectrum, implying
that the matrix(Id − Λ−2/σ2

0)−1 can only be singular if there is a retained eigenvalue that is equal
to all left-out eigenvalues. This is clearly an uninteresting case, since the likelihood will not decrease
if we leave this component out as well.



3.3 An Algorithm for XCA

To optimize 16 efficiently we first note that the sum of the eigenvalues{σ2
i } is constant:∑

i∈C∪G σ2
i = tr(S). We may use this to rewriteL in terms of the retained eigenvalues

only. We define the following auxiliary cost to be minimized which is proportional to−L
up to irrelevant constants,

K =
∑

i∈C
log σ2

i + (D − d) log(tr(S)−
∑

i∈C
σ2

i ). (17)

Next we recall an important result that was proved in [4]:the minimizing solution has
eigenvaluesσ2

i , i ∈ G which are contiguous in the (ordered) spectrum, i.e. the eigenval-
ues which are averaged form a “gap” in the spectrum. With this result, the search for the
optimal solution has been reduced from exponential to linear in the number of retained di-
mensionsd. Thus we obtain the following algorithm for determining the optimald extreme
components: (1) Compute the firstd principal components and the firstd minor compo-
nents, (2) for alld possible positions of the ”gap” compute the costK in eqn. 17, and (3)
select the solution that minimizesK.

It is interesting to note that the same equations for the log-likelihood (L, eqn.16) and cost
(K, eqn.17) appear in the analysis of PPCA [4] and PMCA [6]. The only difference being
that certain constraints forcing the solution to contain only principal or minor components
are absent in eqn. 16. For XCA, this opens the possibility for mixed solutions with both
principal and minor components. From the above observation we may conclude thatthe
optimal ML solution for XCA will always have larger log-likelihood on the training data
then the optimal ML solutions for PPCA and PMCA. Moreover, when XCA contains only
principal (or minor) components, it must have equal likelihood on the training data as PPCA
(or PMCA). In this sense XCA is the natural extension of PPCA and PMCA.

4 Properties of the Optimal ML Solution

We will now try to provide some insight into the nature of the the optimal ML solutions.
First we note that the objectiveK is shifted by a constant if we multiply all variances by
a factorσ2

i → ασ2
i , which leaves its minima invariant. In other words, the objective is

only sensitive to changingratios between eigenvalues. This property suggests to use the
logarithm of the eigenvalues ofS as the natural quantities since multiplying all eigenvalues
with a constant results in a vertical shift of the log-spectrum. Consequently, the properties
of the optimal solution only depend on theshapeof the log-spectrum. In appendix A we
prove the following characterization of the optimal solution,

Theorem 1
• A log-linear spectrum has no preference for principal or minor components.
• The extreme components of log-convex spectra are principal components.
• The extreme components of log-concave spectra are minor components.

Although a log-linear spectrum with arbitrary slope has no preference for principal or minor
components, the slope does have an impact on the accuracy of the approximation because
the variances in the gap are approximated by their average value. A spectrum that can be
exactly modelled by PPCA with sufficient retained directions is one which has a pedestal,
i.e. where the eigenvalues become constant beyond some value. Similarly PMCA can
model exactly a spectrum which is constant and then drops off while XCA can model
exactly a spectrum with a constant section at some arbitrary position. Some interesting
examples of spectra can be obtained from the Fourier (spectral) representation of stationary
Gaussian processes. Processes with power-law spectraS(ω) ∝ ω−α are log convex. An
example of a spectrum which is log linear is obtained from the RBF covariance function



Table 1:Percent classification error of noisy sinusoids as a function ofg = D − d.

g 2 3 4 5 6 7 8
εXCA 1.88 1.91 2.35 1.88 2.37 3.27 28.24
εMCA 2.37 3.10 4.64 4.06 2.37 3.27 28.24
εPCA 1.88 2.50 12.21 14.57 19.37 32.99 30.14

with a Gaussian weight function, [7]. The RBF covariance function on the circle will give
rise to eigenvaluesλi ∝ e−βi2 , i.e. a log-concave spectrum.

Both PCA and MCA share the convenient property that a solution withd components is
contained in the solution withd+1 components. This is not the case for XCA: the solution
with d+1 components may look totally different than the solution withd components (see
inset in Figure 1c), in fact they may not even share a single component!

5 Experiments

Small Sample Effects
When the number of data cases is small relative to the dimensionality of the problem, the
log-spectrum tends to bend down on the MC side producing “spurious” minor components
in the XCA solution. Minor components that result from finite sample effects, i.e. that do
not exist in the infinite data limit, have an adverse effect on generalization performance.
This is shown in Figure 1a for the “Frey-Faces” dataset, where we plot the log-likelihood
for (centered) training and test data for both PCA and XCA. This dataset contains1965
images of size20 × 28, of which we used1000 for training and965 for testing. Since
the number of cases is small compared to the number of dimensions, both PCA and XCA
show a tendency to overfit. Note that at the point that minor components appear in the XCA
solution (d= 92) the log-likelihood of the training data improves relative to PCA, while
the log-likelihood of the test data suffers.

Sinusoids in noise
Consider a sum ofp sinusoidsY (t) =

∑p
i=1 Ai cos(ωit + φi) sampled atD equally-

spaced time points. If eachφi is random in(0, 2π) then the covariance〈Y (t)Y (t′)〉 =∑p
i=1 Pi cosωi(t − t′) wherePi = A2

i /2. This signal defines a2p-dimensional linear
manifold in theD-dimensional space (see [2]§12.5). By adding white noise to this signal
we obtain a non-singular covariance matrix. Now imagine we have two such signals, each
described byp different powers and frequencies. Instead of using the exact covariance
matrix for each we approximate the covariance matrix using either XCA, PMCA or PPCA.
We then compare the accuracy of a classification task using either the exact covariance
matrix, or the approximations. (Note that although the covariance can be calculated exactly
the generating process is not in fact a Gaussian process.) By adjustingp, the powers and
the frequencies of the two signals, a variety of results can be obtained. We setD = 9 and
p = 4. The first signal hadP = (1.5, 2.5, 3, 2.5) andω = (1.9, 3.5, 4.5, 5), and the second
P = (3, 2, 1.8, 1) andω = (1.7, 2.9, 3.3, 5.3). The variance of the background noise was
0.5. Table 1 demonstrates error rates on 10000 test cases obtained for XCA, PMCA and
PPCA usingg = D − d approximated components. For all values ofg the error rate for
XCA is ≤ than that for PPCA and PMCA. For comparison, the optimal Gaussian classifier
has an error rate of 1.87%. Forg = 2 the XCA solution for both classes is PPCA, and for
g = 6, 7, 8 it is PMCA; in between both classes have true XCA solutions. MCA behaviour
is observed ifσ2

0 is low.

2-D Positions of Face Features
671 cases were extracted from a dataset containing 2-D coordinates of6 features on frontal
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Figure 1: (a) Log-likelihood of the “Frey-faces” training data (top curves) and test data (bottom
curves) for PCA (dashed lines) and XCA (solid lines) as a function of the number of components.
Inset: log-spectrum of training data.(b) Log-likelihood of training data for PCA (dash), MCA (dash-
dot) and XCA (solid) as a function of the number of components. Inset: log-spectrum of training
data. (c) Log-likelihood of test data. Inset: number of PCs (dash) versus number of MCs (dash-dot)
as a function of the number of components.

faces3. To obtain a translation and orientation invariant representation, we computed the15
squared (Euclidean) distances between the features and removed their mean. In Figures 1b
and 1c we show the log-likelihood for PCA, MCA and XCA of335 training cases and336
test cases respectively. Clearly, XCA is superior even on the test data. In the inset of Figure
1c we depict the number of PCs and MCs in the XCA solution as we vary the number of
retained dimensions. Note the irregular behavior when the number of components is large.

6 Discussion

In this paper we have proposed XCA as the natural generalization of PCA and MCA for the
purpose of dimensionality reduction. It is however also possible to consider a model with
non-Gaussian components. In [5] the components were distributed according to a Student-t
distribution resulting in a probabilistic model for undercomplete independent components
analysis (UICA).

There are quite a few interesting questions that remain unanswered in this paper. For in-
stance, although we have shown how to efficiently find the global maximum of the log-
likelihood, we haven’t identified the properties of the other stationary points. Unlike PPCA
we expect many local maxima to be present. Also, can we formulate a Bayesian version of
XCA where we predict the number and nature of the components supported by the data?
Can we correct the systematic under-estimation of MCs in the presence of relatively few
data cases? There are a number of extensions of the XCA model worth exploring: XCA
with multiple noise models (i.e. multiple gaps in the spectrum), mixtures of XCA and so
on.

A Proof of Theorem 1

Using the fact that the sum and the product of the eigenvalues are constant we can rewrite
the cost eqn.17 (up to irrelevant constants) in terms of the left-out eigenvalues of the spec-
trum only. We will also use the fact that the left-out eigenvalues are contiguous in the

3Thedataset was obtained by M. Weber at the computational vision lab at Caltech and contains
the 2-D coordinates of6 features (eyes, nose,3 mouth features) of unregistered frontal face images.



spectrum,and form a “gap” of sizeg
def= D − d,

C = g log




i∗+g−1∑

i=i∗
efi


−

i∗+g−1∑

i=i∗
fi (18)

wherefi are the log-eigenvalues andi∗ is the location of the left hand side of the gap. We
are interested in the change of this costδC if we shift it one place to the right (or the left).
This can be expressed as

δC = g log

(
1 +

efi∗+g − efi∗

∑i∗+g−1
i=i∗ efi

)
− (f(i∗ + g)− f(i∗)) . (19)

Insertinga log-linear spectrum:fi = b + a · i with a < 0 and using the result
∑g−1

i=0 ea·i =
(eag − 1)/(ea − 1) we find that the change inC vanishes for all log-linear spectra. This
establishes the first claim. For the more general case we define correctionsci to the log-
linear spectrum that runs through the pointsfi∗ andfi∗+g, i.e. fi = b + a · i + ci. First
consider the case of a convex spectrum betweeni∗ andi∗+g, which implies that allci < 0.
Inserting this into 19 we find after some algebra

δC = g log

(
1 +

eag − 1∑g−1
i′=0 ea·i′+c[i′+i∗]

)
− ag. (20)

Because allci < 0, the first term must be smaller (more negative) than the corresponding
term in the linear case implying thatδC < 0 (the second term is unchanged w.r.t the
linear case). Thus, if the entire spectrum is log-convex the gap will be located on the right,
resulting in PCs. A similar argument shows that for log-concave spectra the solutions
consist of MCs only. In general log-spectra may have convex and concave pieces. The cost
18 is minimized when some of theci are positive and some negative in such a way that,∑g−1

i′=0 ea·i′+c[i′+i∗] ≈ ∑g−1
i′=0 ea·i′ Note that due to the exponent in this sum, positiveci

have a stronger effect than negativeci.
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