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Abstract

This paper addresses the problem of untangling hidden graphs from
a set of noisy detections of undirected edges. We present a model
of the generation of the observed graph that includes degree-based
structure priors on the hidden graphs. Exact inference in the model
is intractable; we present an efficient approximate inference algo-
rithm to compute edge appearance posteriors. We evaluate our
model and algorithm on a biological graph inference problem.

1 Introduction and motivation

The inference of hidden graphs from noisy edge appearance data is an important
problem with obvious practical application. For example, biologists are currently
building networks of all the physical protein-protein interactions (PPI) that occur
in particular organisms. The importance of this enterprise is commensurate with its
scale: a completed network would be as valuable as a completed genome sequence,
and because each organism contains thousands of different types of proteins, there
are millions of possible types of interactions. However, scalable experimental meth-
ods for detecting interactions are noisy, generating many false detections. Motivated
by this application, we formulate the general problem of inferring hidden graphs as
probabilistic inference in a graphical model, and we introduce an efficient algorithm
that approximates the posterior probability that an edge is present.

In our model, a set of hidden, constituent graphs are combined to generate the ob-
served graph. Each hidden graph is independently sampled from a prior on graph
structure. The combination mechanism acts independently on each edge but can
be either stochastic or deterministic. Figure 1 shows an example of our generative
model. Typically one of the hidden graphs represents the graph of interest (the true
graph), the others represent different types of observation noise. Independent edge
noise may also be added by the combination mechanism. We use probabilistic in-
ference to compute a likely decomposition of the observed graph into its constituent
parts. This process is deemed “untangling”. We use the term “denoising” to refer
to the special case where the edge noise is independent. In denoising there is a
single hidden graph, the true graph, and all edge noise in the observed graph is due
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Figure 1: Illustrative generative model example. Figure shows an example where an observed
graph, X, is a noisy composition of two constituent graphs, E1 and E2. All graphs share the
same vertex set, so each can be represented by a symmetric matrix of random binary variables
(i.e., an adjacency matrix). This generative model is designed to solve a toy counter-espionage
problem. The vertices represent suspects and each edge in X represents an observed call
between two suspects. The graph X reflects zero or more spy rings (represented by E1),
telemarketing calls (represented by E2), social calls (independent edge noise), and lost call
records (more independent edge noise). The task is to locate any spy rings hidden in X. We
model the distribution of spy ring graphs using a prior, P (E1), that has support only on graphs
where all vertices have degree of either 2 (i.e., are in the ring) or 0 (i.e., are not). Graphs of
telemarketing call patterns are represented using a prior, P (E2), under which all nodes have
degrees of > 3 (i.e., are telemarketers), 1 (i.e., are telemarketees), or 0 (i.e., are neither). The
displayed hidden graphs are one likely untangling of X.

to the combination mechanism.

Prior distributions over graphs can be specified in various ways, but our choice is
motivated by problems we want to solve, and by a view to deriving an efficient infer-
ence algorithm. One compact representation of a distribution over graphs consists
of specifying a distribution over vertex degrees, and assuming that graphs that have
the same vertex degrees are equiprobable. Such a prior can model quite rich distri-
butions over graphs. These degree-based structure priors are natural representions
of graph structure; many classes of real-world networks have a characteristic func-
tional form associated with their degree distributions [1], and sometimes this form
can be predicted using knowledge about the domain (see, e.g., [2]) or detected em-
pirically (see, e.g., [3, 4]). As such, our model incorporates degree-based structure
priors.

Though exact inference in our model is intractable in general, we present an efficient
algorithm for approximate inference for arbitrary degree distributions. We evaluate
our model and algorithm using the real-world example of untangling yeast protein-
protein interaction networks.



2 A model of noisy and tangled graphs

For degree-based structure priors, inference consists of searching over vertex degrees
and edge instantiations, while comparing each edge with its noisy observation and
enforcing the constraint that the number of edges connected to every vertex must
equal the degree of the vertex. Our formulation of the problem in this way is in-
spired by the success of the sum-product algorithm (loopy belief propagation) for
solving similar formulations of problems in error-correcting decoding [6, 7], phase
unwrapping [8], and random satisfiability [9]. For example, in error-correcting de-
coding, inference consists of searching over configurations of codeword bits, while
comparing each bit with its noisy observation and enforcing parity-check constraints
on subsets of bits [10].

For a graph on a set of N vertices, eij is a variable that indicates the presence
of an edge connecting vertices i and j: eij = 1 if there is an edge, and eij = 0
otherwise. We assume the vertex set is fixed, so each graph is specified by an
adjacency matrix, E = {eij}

N
i,j=1. The degree of vertex i is denoted by di and the

degree set by D = {di}
N
i=1. The observations are given by a noisy adjacency matrix,

X = {xij}
N
i,j=1. Generally, edges can be directed, but in this paper we focus on

undirected graphs, so eij = eji and xij = xji.

Assuming the observation noise is independent for different edges, the joint distri-
bution is

P (X,E,D) = P (X|E)P (E,D) =
(

∏

j≥i

P (xij |eij)
)

P (E,D).

P (xij |eij) models the edge observation noise. We use an undirected model for the
joint distribution over edges and degrees, P (E,D), where the prior distribution over
di is determined by a non-negative potential fi(di). Assuming graphs that have the
same vertex degrees are equiprobable, we have

P (E,D) ∝
∏

i

(

fi(di)I(di,

N
∑

j=1

eij)
)

,

where I(a, b) = 1 if a = b, and I(a, b) = 0 if a 6= b. The term I(di,
∑

j eij)
ensures that the number of edges connected to vertex i is equal to di. It
is straightforward to show that the marginal distribution over di is P (di) ∝
fi(di)

∑

D\di

(

nD

∏

j 6=i fj(dj)
)

, where nD is the number of graphs with degrees D

and the sum is over all degree variables except di. The potentials, fi, can be
estimated from a given degree prior using Markov chain Monte Carlo; or, as an
approximation, they can be set to an empirical degree distribution obtained from
noise-free graphs.

Fig 2a shows the factor graph [11] for the above model. Each filled square cor-
responds to a term in the factorization of the joint distribution and the square is
connected to all variables on which the term depends. Factor graphs are graphical
models that unify the properties of Bayesian networks and Markov random fields
[12]. Many inference algorithms, including the sum-product algorithm (a.k.a. loopy
belief propagation), are more easily derived using factor graphs than Bayesian net-
works or Markov random fields. We describe the sum-product algorithm for our
model in section 3.
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Figure 2: (a) A factor graph that describes a distribution over graphs with vertex degrees
di, binary edge indicator variables eij , and noisy edge observations xij . The indicator function
I(di,

∑

j eij) enforces the constraint that the sum of the binary edge indicator variables for
vertex i must equal the degree of vertex i. (b) A factor graph that explains noisy observed
edges as a combination of two constituent graphs, with edge indicator variables e1

ij and e2
ij .

(c) The constraint I(di,
∑

j eij) can be implemented using a chain with state variables, which
leads to an exponentially faster message-passing algorithm.

2.1 Combining multiple graphs

The above model is suitable when we want to infer a graph that matches a degree
prior, assuming the edge observation noise is independent. A more challenging
goal, with practical application, is to infer multiple hidden graphs that combine to
explain the observed edge data. In section 4, we show how priors over multiple
hidden graphs can be be used to infer protein-protein interactions.

When there are H hidden graphs, each constituent graph is specified by a set of
edges on the same set of N common vertices. For the degree variables and edge
variables, we use a superscript to indicate which hidden graph the variable is used
to describe. Assuming the graphs are independent, the joint distribution over the
observed edge data X, and the edge variables and degree variables for the hidden
graphs, E1, D1, . . . , EH , DH , is

P (X,E1, D1, . . . , EH , DH) =
(

∏

j≥i

P (xij |e
1
ij , . . . , e

H
ij )
)

H
∏

h=1

P (Eh, Dh), (1)

where for each hidden graph, P (Eh, Dh) is modeled as described above. Here, the
likelihood P (xij |e

1
ij , . . . , e

H
ij ) describes how the edges in the hidden graphs combine

to model the observed edge. Figure 2b shows the factor graph for this model.

3 Probabilistic inference of constituent graphs

Exact probabilistic inference in the above models is intractable, here we introduce
an approximate inference algorithm that consists of applying the sum-product al-
gorithm, while ignoring cycles in the factor graph. Although the sum-product algo-
rithm has been used to obtain excellent results on several problems [6, 7, 13, 14, 8, 9],
we have found that the algorithm works best when the model consists of uncertain
observations of variables that are subject to a large number of hard constraints.
Thus the formulation of the model described above.



Conceptually, our inference algorithm is a straight-forward application of the sum-
product algorithm, c.f. [15], where messages are passed along edges in the factor
graph iteratively, and then combined at variables to obtain estimates of posterior
probabilities. However, direct implementation of the message-passing updates will
lead to an intractable algorithm. In particular, direct implementation of the update
for the message sent from function I(di,

∑

j eij) to edge variable eik takes a number
of scalar operations that is exponential in the number of vertices. Fortunately there
exists a more efficient way to compute these messages.

3.1 Efficiently summing over edge configurations

The function I(di,
∑

j eij) ensures that the number of edges connected to vertex i
is equal to di. Passing messages through this function requires summing over all
edge configurations that correspond to each possible degree, di, and summing over
di. Specifically, the message, µIi→eik

(eik), sent from function I(di,
∑

j eij) to edge
variable eik is given by

∑

di

∑

{eij | j=1,...,N, j 6=k}

(

I(di,
∑

j

eij)
∏

j 6=k

µeij→Ii
(eij)

)

,

where µeij→Ii
(eij) is the message sent from eij to function I(di,

∑

j eij).

The sum over {eij | j = 1, . . . , N, j 6= k} contains 2N−1 terms, so direct computation
is intractable. However, for a maximum degree of dmax, all messages departing
from the function I(di,

∑

j eij) can be computed using order dmaxN binary scalar

operations, by introducing integer state variables sij . We define sij =
∑

n≤j ein

and note that, by recursion, sij = sij−1 + eij , where si0 = 0 and 0 ≤ sij ≤ dmax.
This recursive expression enables us to write the high-complexity constraint as the
sum of a product of low-complexity constraints,

I(di,
∑

j

eij) =
∑

{sij | j=1,...,N}

I(si1, ei1)
(

N
∏

j=2

I(sij , sij−1 + eij)
)

I(di, siN ).

This summation can be performed using the forward-backward algorithm. In
the factor graph, the summation can be implemented by replacing the function
I(di,

∑

j eij) with a chain of lower-complexity functions, connected as shown in Fig.

2c. The function vertex (filled square) on the far left corresponds to I(si1, ei1) and
the function vertex in the upper right corresponds to I(di, siN ). So, messages can
be passed through each constraint function I(di,

∑

j eij) in an efficient manner, by
performing a single forward-backward pass in the corresponding chain.

4 Results

We evaluate our model using yeast protein-protein interaction (PPI) data compiled
by [16]. These data include eight sets of putative, but noisy, interactions derived
from various sources, and one gold-standard set of interactions detected by reliable
experiments.

Using the ∼ 6300 yeast proteins as vertices, we represent the eight sets of putative
interactions using adjacency matrices {Y m}8m=1 where y

m
ij = 1 if and only if putative

interaction datasetm contains an interaction between proteins i and j. We similarly
use Y gold to represent the gold-standard interactions.

We construct an observed graph, X, by setting xij = maxm ym
ij for all i and j, thus

the observed edge set is the union of all the putative edge sets. We test our model
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Figure 3: Protein-protein interaction network untangling results. (a) ROC curves measuring
performance of predicting e1

ij when xij = 1. (b) Degree distributions. Compares the empirical
degree distribution of the test set subgraph of E1 to the degree potential f 1 estimated on the
training set subgraph of E1 and to the distribution of di =

∑

j pij where pij = P̂ (e1
ij = 1|X)

is estimated by untangling.

on the task of discerning which of the edges in X are also in Y gold. We formalize
this problem as that of decomposing X into two constituent graphs E1 and E2, the

true and the noise graphs respectively, such that e1ij = xijy
gold
ij and e2ij = xij − e

1
ij .

We use a training set to fit our model parameters and then measure task perfor-
mance on a test set. The training set contains a randomly selected half of the
∼ 6300 yeast proteins, and the subgraphs of E1, E2, and X restricted to those
vertices. The test contains the other half of the proteins and the corresponding
subgraphs. Note that interactions connecting test set proteins to training set pro-
teins (and vice versa) are ignored.

We fit three sets of parameters: a set of Naive Bayes parameters that define a set of
edge-specific likelihood functions, Pij(xij |e

1
ij , e

2
ij), one degree potential, f

1, which

is the same for every vertex in E1 and defines the prior P (E
1), and a second, f2,

that similarly defines the prior P (E2).

The likelihood functions, Pij , are used to both assign likelihoods and enforce prob-
lem constraints. Given our problem definition, if xij = 0 then e1ij = e2ij = 0,

otherwise xij = 1 and e1ij = 1 − e2ij . We enforce the former constraint by set-

ting Pij(xij = 0|e
1
ij , e

2
ij) = (1 − e1ij)(1 − e2ij), and the latter by setting Pij(xij =

1|e1ij , e
2
ij) = 0 whenever e

1
ij = e2ij . This construction of Pij simplifies the calculation

of the µPij→eh
ij
messages and improves the computational efficiency of inference be-

cause when xij = 0, we need never update messages to and from variables e
1
ij and

e2ij . We complete the specification of Pij(xij = 1|e
1
ij , e

2
ij) as follows:

Pij(xij = 1|e
1
ij , e

2
ij) =

{

θ
ym

ij
m (1− θm)

1−ym
ij , if e1ij = 1 and e

2
ij = 0,

ψ
ym

ij
m (1− ψm)

1−ym
ij , if e1ij = 0 and e

2
ij = 1.

where {θm} and {ψm} are naive Bayes parameters, θm =
∑

i,j y
m
ij e

1
ij/

∑

i,j e
1
ij and



ψm =
∑

i,j y
m
ij e

2
ij/

∑

i,j e
2
ij , respectively.

The degree potentials f1(d) and f2(d) are kernel density estimates fit to the degree
distribution of the training set subgraphs of E1 and E2, respectively. We use
Gaussian kernels and set the width parameter (standard deviation) σ using leave-
one-out cross-validation to maximize the total log density of the held-out datapoints.
Each datapoint is the degree of a single vertex. Both degree potentials closely
followed the training set empirical degree distributions.

Untangling was done on the test set subgraph of X. We initially set the µPij→e1
ij

messages equal to the likelihood function Pij and we randomly initialized the
µI1

j→e1
ij
messages with samples from a normal distribution with mean 0 and vari-

ance 0.01. We then performed 40 iterations of the following message update order:
µe1

ij→I1
j
, µI1

j→e1
ij
, µe1

ij→Pij
, µPij→e2

ij
, µe2

ij→I2
j
, µI2

j→e2
ij
, µe2

ij→Pij
, µPij→e1

ij
.

We evaluated our untangling algorithm using an ROC curve by comparing the actual
test set subgraph of E1 to posterior marginal probabilities,P̂ (e1ij = 1|X), estimated
by our sum-product algorithm. Note that because the true interaction network is
sparse (less than 0.2% of the 1.8× 107 possible interactions are likely present [16])
and, in this case, true positive predictions are of greater biological interest than
true negative predictions, we focus on low false positive rate portions of the ROC
curve.

Figure 3a compares the performance of a classifier for e1ij based on thresholding

P̂ (eij = 1|X) to a baseline method based on thresholding the likelihood functions,
Pij(xij = 1|e

1
ij = 1, e

2
ij = 0). Note because e

1
ij = 0 whenever xij = 0, we exclude

the xij = 0 cases from our performance evaluation. The ROC curve shows that
for the same low false positive rate, untangling produces 50% − 100% more true
positives than the baseline method.

Figure 3b shows that the degree potential, the true degree distribution, and the
predicted degree distribution are all comparable. The slight overprediction of the
true degree distribution may result because the degree potential f 1 that defines
P (E1) is not equal to the expected degree distribution of graphs sampled from the
distribution P (E1).

5 Summary and Related Work

Related work includes other algorithms for structure-based graph denoising [17, 18].
These algorithms use structural properties of the observed graph to score edges and
rely on the true graph having a surprisingly large number of three (or four) edge
cycles compared to the noise graph. In contrast, we place graph generation in a
probabilistic framework; our algorithm computes structural fit in the hidden graph,
where this computation is not affected by the noise graph(s); and we allow for
multiple sources of observation noise, each with its own structural properties.

After submitting this paper to the NIPS conference, we discovered [19], in which a
degree-based graph structure prior is used to denoise (but not untangle) observed
graphs. This paper addresses denoising in directed graphs as well as undirected
graphs, however, the prior that they use is not amenable to deriving an efficient sum-
product algorithm. Instead, they use Markov Chain Monte Carlo to do approximate
inference in a hidden graph containing 40 vertices. It is not clear how well this
approach scales to the ∼ 3000 vertex graphs that we are using.

In summary, the contributions of the work described in this paper include: a general



formulation of the problem of graph untangling as inference in a factor graph; an
efficient approximate inference algorithm for a rich class of degree-based structure
priors; and a set of reliability scores (i.e., edge posteriors) for interactions from a
current version of the yeast protein-protein interaction network.
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[9] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random
satisfiability problems. Science, 297:812–815, 2002.

[10] B. J. Frey and D. J. C. MacKay. Trellis-constrained codes. In Proceedings of the 35th

Allerton Conference on Communication, Control and Computing 1997, 1998.

[11] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, Special Issue on Codes on
Graphs and Iterative Algorithms, 47(2):498–519, February 2001.

[12] B. J. Frey. Factor graphs: A unification of directed and undirected graphical models.
University of Toronto Technical Report PSI-2003-02, 2003.

[13] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. In Uncertainty in Artificial Intelligence
1999. Stockholm, Sweden, 1999.

[14] W. Freeman and E. Pasztor. Learning low-level vision. In Proceedings of the Inter-
national Conference on Computer Vision, pages 1182–1189, 1999.

[15] M. I. Jordan. An Inroduction to Learning in Graphical Models. 2004. In preparation.

[16] C von Mering et al. Comparative assessment of large-scale data sets of protein-protein
interactions. Nature, 2002.

[17] R Saito, H Suzuki, and Y Hayashizaki. Construction of reliable protein-protein in-
teraction networks with a new interaction generality measure. Bioinformatics, pages
756–63, 2003.

[18] D S Goldberg and F P Roth. Assessing experimentally derived interactions in a small
world. Proceedings of the National Academy of Science, 2003.

[19] S M Gomez and A Rzhetsky. Towards the prediction of complete protein–protein
interaction networks. In Pacific Symposium on Biocomputing, pages 413–24, 2002.


