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Abstract

Existing source location and recovery algorithms used in magnetoen-
cephalographic imaging generally assume that the source activity at dif-
ferent brain locations is independent or that the correlation structure is
known. However, electrophysiological recordings of local field poten-
tials show strong correlations in aggregate activity over significant dis-
tances. Indeed, it seems very likely that stimulus-evoked activity would
follow strongly correlated time-courses in different brain areas. Here,
we present, and validate through simulations, a new approach to source
reconstruction in which the correlation between sources is modelled and
estimated explicitly by variational Bayesian methods, facilitating accu-
rate recovery of source locations and the time-courses of their activation.

1 Introduction

The brain’s neuronal activity generates weak magnetic fields (10 fT – 1 pT). Magne-
toencephalography (MEG) is a non-invasive technique for detecting and characterising
these magnetic fields. MEG sensors use super-conducting quantum interference devices
(SQUIDs) to measure the changes in the brain’s magnetic field on a millisecond time-scale.
When combined with electromagnetic source localisation, magnetic source imaging (MSI)
becomes a functional brain imaging method that allows us to characterise macroscopic
dynamic neural information processing.

In the past decade, the development of MSI source reconstruction algorithms has pro-
gressed significantly [1]. Currently, there are two general approaches to estimating MEG
sources: parametric methods and imaging methods [2]. With parametric methods, a few
current dipoles of unknown location and moment are assumed to represent the sources
of activity in the brain. In this case, solving the inverse problem requires a non-linear
optimisation to estimate the position and magnitude of an unknown number of dipoles.
With imaging methods, a grid of voxels is used to represent the entire brain volume. The
inverse problem is then to recover whole brain activation images, represented by the time-
dependent moment and magnitude of an elementary dipole source located at each voxel.
This formulation leads to a linear forward model. However, the ill-posed nature of the
problem leads to non-unique solutions which must be distinguished by prior information,
usually in the form of assumptions regarding the correlation between the sources.



In this paper, we formulate a general spatiotemporal imaging model for MEG data. Our for-
mulationmakes no assumptions about the correlation of the sources; instead, we estimate
the extent of the correlation by an evidence optimisation procedure within a variational
Bayesian framework [3].

1.1 MEG imaging

Many standard MEG devices measure the radial gradient of the magnetic field at a number,
db, of sensor locations (typically arranged on a segment of a sphere). Measurements made
at a single time can be formed into adb-dimensional vectorb; an experiment yields a series
of N such samples, giving adb ×N data matrixB.

This measured field-gradient is affected by a number of different processes. The compo-
nent we seek to isolate is stimulus- or event-related, and is presumably contributed to by
significant activity at a relatively small number of locations in the brain. Thissignal is
corrupted by thermal noise at the sensors, and by widespread spontaneous, unrelated brain
activity. For our purposes, these are both sources of noise, whose distributions are approx-
imately normal [2] (in the case of the unrelated brain activity, the normality results from
the fact that any one sensor sees the sum of effects from a large number of locations). The
covariance matrix of this noise,Ψ, can be measured approximately by accumulating sensor
readings in a quiescent state; simulations suggest that the techniques presented here are
reasonably tolerant to mis-estimation of the noise level. Measurements are also affected
by other forms of interference associated with experimental electronics or bio-magnetic
activity external to the brain. We will not here treat such interference explicitly, instead
assuming that major sources have been removed by preprocessing the measured data,e.g.,
by using blind source separation methods [4].

To represent the significant brain sources, we divide the volume of the brain (or a subsec-
tion of that volume that contains the sources) into a number of voxels and then calculate the
lead-field matrix L that linearly relates the strength of a current dipole in each orientation
at each voxel, to the sensor measurements. For simplicity, we assume a spherical volume
conductor model, which permits analytical calculation ofL independent of the tissue con-
ductivity [2], and which is reasonably accurate for most brain regions [1]. (Non-uniform
volume conduction properties of the brain and surrounding tissues can be explicitly ac-
counted for by elaborating the lead-field matrix calculation, but they do not otherwise affect
the analysis presented below.) In the simple model, only the two tangential components of
the current dipole which fall orthogonal to the radial direction contribute tob, and so the
source vectors has a dimensionds which is twice the number of voxelsdv. The source
matrix S associated with theN field measurements has dimensionsds × N . Thus the
probabilistic forward model for MEG measurements is given by

b ∼ N (Ls,Ψ) (1)

Without considerable prior knowledge of the pattern of brain activation, the number of
possible degrees of freedom in the source vector,ds, will be far greater than the number of
measurements,db; and so there is no unique maximum-likelihood estimate ofs. Instead,
attempts at source recovery depend, either implicitly or explicitly, on the application of
prior knowledge about the source distribution. Most existing methods constrain the source
locations and/or activities in various ways: based on anatomical or fMRI data; by maximum
entropy, minimum L1 norm, weighted-minimum L2 norm or maximum smoothness priors;
or to achieve optimal resolution [1]. Most of these constraints can be formulated as priors
for maximuma posterioriestimation of the sources (although the original statements do not
always make such priors explicit). In addition, some studies have also included temporal
constraints on sources such as smoothness or phase-locking between sources [5].

Consider, for example, linear estimates ofs given byŝ = F ′b. The optimal estimate (in a



least-squares sense) is given by the Wiener filter:

F = 〈bb′〉−1 〈bs′〉 = 〈bb′〉−1 〈(Ls + n)s′〉 = 〈bb′〉−1
L 〈ss′〉 , (2)

(wheren ∼ N (0,Ψ) is a noise vector uncorrelated withs) and therefore requires knowl-
edge of the source correlation matrix〈ss′〉.
One approach to source reconstruction, theminimum-variance adaptive beamformer(or
“beamformer” for short), can be viewed as an approximation to the Wiener filter in which
the correlation matrix of sensor measurements〈bb′〉 is estimated by the observed corre-
lation BB′/N , and the sources at each location are taken to be uncorrelated [6]. If the
orientation of each source dipole is known or estimated independently (so thats contains
only one magnitude at each location), then the source correlation matrix〈ss′〉 reduces to a
diagonal matrix of gain factors. For the beamformer, these factors are chosen to give a unit
“loop gain” for each source i.e. such thatdiag [F ′L] = 1. It can be shown that the beam-
former only yields accurate results when the number of active sources is few [7]. Thus, this
approach makes two assumptions about the sources: an explicit one of decorrelation and
an implicit one of sparse activation. Other techniques tend to make similar assumptions. A
related algorithm using Multiple Signal Classification (MUSIC) also assumes sparsity and
linear independence in the time-series of the sources [1]. Minimum-norm methods can also
be viewed as making specific assumptions about the source correlation matrix [8].

In sharp contrast to the assumed independence or known correlation of brain activity in
these algorithms, electrophysiological studies have shown pronounced and variable corre-
lations in local potentials measured in different (sometimes widely separated) regions of the
brain, and indeed, have argued that these correlations reflect relevant aspects of brain pro-
cessing [9, 10]. This simple observation has profound consequences for most current MEG
imaging algorithms. Not only are they unable to access this source of temporal information
about brain function (despite the temporal fidelity of the technique in other respects), but
they may also provide inaccurate source localisations or reconstructions by dint of their
incorrect assumptions regarding source correlation.

In this paper, we present a novel approach to source reconstruction. Our technique shares
with many of the methods described above the assumption of sparsity in source activa-
tion. However, it dispenses entirely with assumption of source independence. Instead, we
estimate the source correlation matrix from the data by hyperparameter optimisation.

2 Model

To parameterise the source correlation matrix in a manner tractable for learning, we assume
that the source activitiess are formed by a linear combination, with weight matrixW , of
dz independent unit-variance normalpre-sourcesz,

s = Wz; z ∼ N (0, I) , (3)

so that learning the correlation matrix〈ss′〉 = WW ′ becomes equivalent to estimation of
the weightsW .1 The sources are not really expected to have the Gaussian amplitude dis-
tribution that this construction implies. Instead, the assumption forms a convenient fiction,
making it easy to estimate the source correlation matrix. We show in simulations below
that estimation in this framework can indeed yield accurate estimates of the correlation
matrix even for non-normally distributed source activity. Once the correlation matrix has
been established, estimation using the Wiener filter of (2) provides the bestlinear estimate
of source activity (and would be the exact maximuma posterioriestimate if the sources
really were normally distributed).

1This formulation is similar to that used in weighted minimum-norm methods, although there the
weightsW are fixed, implying a pre-determined source correlation matrix.



The model of (3) parameterises the source correlation in a general way, subject to a max-
imum rank ofdz. This rank constraint does not by itself favour sparsity in the source dis-
tribution, and could easily be chosen to be equal tods. Instead, the sparsity emerges from
a hyperparameter optimisation similar to the automatic relevance determination (ARD) of
Mackay and Neal [11] (see also [12, 13]). Equation (3) defined a prior ons with parameters
W . We now add ahyperprior on W under which the expected power of both tangential
components at thevth voxel is determined by a hyperparameterαv. For notational conve-
nience we collect theαv into a vectorα and introduce ads × dv indicator matrixJ , with
Jiv = 1 if the ith source is located in thevth voxel and0 otherwise. Thus, each column of
J contains exactly two unit entries, one for each tangential component of the corresponding
voxel dipole. Finally, we introduce ads × ds diagonal matrixA with Aii = (Jα)i. Then

Wij ∼ N (0, A−1
ii ) . (4)

Thus eachαv sets a prior distribution on the length of the two rows in the weight matrix
corresponding to source components at thevth voxel. As in the original ARD models, opti-
misation of the marginal likelihood or evidence,P (B | α, L,Ψ), with respect to theαv re-
sults in a number of the hyperparameters diverging to infinity. This imposes a zero-centred
delta-function prior on the corresponding row ofW , in turn forcing the corresponding
source power to vanish. It is this optimisation, then, which introduces the sparsity.

Before passing to the optimisation scheme, we summarise the model introduced above
by the log joint probability it assigns to observations, pre-sources and weights (here, and
below, we drop the explicit conditioning on the fixed parametersL andΨ)

log P (B,Z,W | α) = −1
2

(N log |2πΨ|+ Tr [(B − LWZ)′Ψ−1(B − LWZ)])

− 1
2

(Ndz log(2π) + Tr [Z ′Z])− 1
2

(dz log |2πA−1|+ Tr [W ′AW ]) (5)

3 Learning

Direct optimisation of the log marginal likelihoodlog
∫

dZ dW P (B,Z,W | α) proves
to be intractable. Instead, we adopt the “variational Bayes” (VB) framework of [3, 12].
VB is a form of the Expectation-Maximisation (EM) algorithm for maximum-likelihood
estimation. Given unknown distributionsQz(Z) andQw(W ), Jensen’s inequality provides
a bound on the log-likelihood

log P (B | α) = log
∫

dZ dW
Qz(Z)Qw(W )
Qz(Z)Qw(W )

P (B,Z,W | α)

≥ 〈log P (B,Z,W | α)〉Qz(Z)Qw(W ) + H(Qz) + H(Qw)

(whereH(·) represents the Shannon entropy). This bound can then be optimised by alter-
nate maximisations with respect toQz, Qw and the hyperparametersα. If, in place of the
factored distributionQz(Z)Qw(W ) we had used a jointQ(Z,W ), this procedure would
be guaranteed to find a local maximum in the marginal likelihood (by analogy to EM). As
it is, the optimisation is only approximate, but has been found to yield good maxima in a
factor analysis model very similar to the one we consider here [12]. In our experiments,
a slight variant of the standard VB procedure, described below, improved further on the
accuracy of the solutions found.



Given estimatesQn
z , Qn

w andαn at thenth step, the(n + 1)th iteration is given by:

Qn+1
z (Z) ∝ exp 〈log P (B, Z, W | αn)〉Qn

w
= N

(
Σn+1

z 〈W 〉′Qn
w

L′Ψ−1B, Σn+1
z

)
with Σn+1

z =
〈
W ′L′Ψ−1LW + I

〉−1

Qn
w

,

Qn+1
w (W ) ∝ exp 〈log P (B, Z, W | αn)〉Qn

z
= N

(
Σn+1

w vec
(
L′Ψ−1B 〈Z′〉

Qn+1
z

)
, Σn+1

w

)
;

with Σn+1
w =

(
〈ZZ′〉

Qn+1
z

⊗ L′Ψ−1L + I ⊗An
)−1

,

and αn
v = dz

(
J ′diag

[
〈W 〉

Qn+1
w

〈W 〉′
Qn+1

w

])−1

v

(
(J ′1)v − αv(J ′diag

[
Σn+1

w

]
)v

)
.

where the normal distribution onZ implies a normal distribution on each columnz; the
distribution onW is normal onvec (W ) 2; 1 is a vector of ones; and thediag [·] operator
returns the main diagonal of its argument as a vector.

Our experience is that better results can be obtained if the posterior expectation ofZZ ′ in
theQw update is replaced by its value under the prior onZ, NI. This variant appears to
constrain the factored posterior to remain closer to the true joint distribution. It has the
additional benefit of simplifying both the notational and computational complexities of the
updates (for the latter, it reduces the complexity of the inversion needed to calculateΣw

from (dsdz)3 to d2
s). We can then rewrite the updates into a more compact form by using

this assumption, and by evaluating the expectations, to obtain

Σn+1
z = (Wn′L′Ψ−1LWn + Tr [L′Ψ−1L′Σn

w] I + I)−1 (6a)

Σn+1
w = (NL′Ψ−1L + An)−1 = (An)−1 − (An)−1L′(N−1Ψ + L(An)−1L′)−1L(An)−1

(6b)

Wn+1 = Σn+1
w L′Ψ−1BB′Ψ−1LWnΣn+1

z (6c)

αn+1
v = dz

(
J ′diag

[
Wn+1Wn+1′

])−1

v
((J ′1)v − αn

v (J ′diag
[
Σn+1

w

]
)v), (6d)

whereWn = 〈W 〉Qn
w

. The use of the matrix inversion lemma in (6b) exploits the diago-
nality of A to reduce the computational complexity of the algorithm with respect tods.

The formulae of (6) are easily implemented and recover an estimate ofW , and thus the
source correlation matrix, by iteration. The source activities can then be estimated by use
of the Wiener filter (2). The updates of (6) also demonstrate an important point concerning
the validity of our Gaussian model. Note that the measured data enter into the estimation
procedure only through their correlationBB′. In other words, the hyperparameter opti-
misation stage of our algorithm is only being used to model the data correlation,not their
amplitudes. As a result, the effects of incorrectly assuming a Gaussian source amplitude
distribution can be expected to remain relatively benign.

4 Simulations

Simulation studies provide an important tool for evaluating source recovery algorithms, in
that they provide “sensor” data sets for which the correct answer (i.e. the true locations and
time-courses of the sources) is known. We report here the results of simulations carried out
using parameters similar to those that might be encountered in realistic recordings.

4.1 Methods

We simulated 100 1-s-long epochs of evoked response data. The sensor configuration was
taken from a real experiment: two sensor arrays, with 37 gradiometer coils each, were

2for a discussion of thevec operator and the Kronecker product⊗ see e.g. [14]



located on either side of the head (see figure 1). Candidate source dipoles were located on
agrid with 1 cm spacing within a hemispherical brain volume with a radius of 8 cm, to give
a total of 956 possible source locations. Significant (above background) evoked activity
was simulated at 5 of these locations (see figure 1a), with random dipole orientations. The
evoked waveforms were similar in form to the evoked responses seen in many areas of the
brain (see figure 2a), and were strongly correlated between the five sites (figure 3a). The
two most lateral sites (one on each side), expressed bilateral primary sensory activation,
and had identical time-courses with the shortest latency. Another lateral site, on the left
side, had activity with the same waveform, but delayed by 50 ms. Two medial sites had
slower and more delayed activation profiles. The dipole orientation at each site was chosen
randomly in the plane parallel to the sensor tangent. Note that the amplitude distribution
of these sources is strongly non-Gaussian; we will see, however, that they can be recovered
successfully by the present technique despite its assumption of normality.

The simulated sensor recordings were corrupted by noise from two sources, both with
Gaussian distribution. Background activity in the brain was simulated with equal power
at every point on the grid of candidate sources, with a root-mean-square (RMS) amplitude
1.5 decades below that of the 5 significant sources. Although this background activity was
uncorrelated between brain locations, it resulted in correlated disturbances at the magnetic
sensors. Thermal noise in the sensors was uncorrelated, and had a similar magnitude (at
the sensors) to that of the background noise.

The novel Bayesian estimation technique was applied to the raw simulated sensor trace
rather than to epoch-averaged data. While in this simulation the evoked activity was iden-
tical in each trial, determining the correlation matrix from unaveraged data should, in the
more general case, make single-trial reconstructions more accurate. Once reconstructed,
the source timecourses were averaged, and are shown in figure 2. The number of pre-
sourcesdz, a free parameter in the algorithm, was set to 10. Sources associated with inverse
variance hyperparametersαi above a threshold (here1015) were taken to be inactive.

For comparison, we also reconstructed sources using the vector minimum-variance adap-
tive beamformer approach [15]. Note that this technique, along with many other existing
reconstruction methods, assumes that sources at different locations are uncorrelated and so
it should not be expected to perform well under the conditions of our simulation.

4.2 Results

Figure 1 shows the source locations and powers reconstructed by the novel Bayesian ap-
proach developed here (b) and by the beamformer (c). The Bayesian approach identified
the correct number of sources, at the correct locations and with approximately correct rel-
ative powers. By contrast, the beamformer approach, which assumes uncorrelated sources,
entirely failed to locate the sources of activity.

Figure 2bshows the average evoked-response reconstruction at each of the identified source
locations (with the simulated waveforms shown in panela). The general time-course of the
activities has clearly been well characterised. The time-courses estimated by the vector
beamformer are shown in figure 2c. As beamformer localisation proved to be unreliable,
the time-courses shown are the reconstructions at the positions of the correct (simulated)
sources. Nonetheless, the strong correlations in the sources have corrupted the reconstruc-
tions. Note that the only difference between the time-courses shown in figure 2b andc is
premultiplication by the estimated source correlation matrix inb.

Finally, figure 3 shows the correlation coefficient matrices for the dipole amplitude time-
courses of the active sources shown in figure 2. We see that the Bayesian approach finds a
reasonable approximation to the correct correlation structure. Again, however, the beam-
former is unable to accurately characterise the correlation matrix.



Figure 1: Reconstructed source power. Each dot represents a single voxel, the size and shade of the
superimposedcircles indicates the relative power of the corresponding source. Each column contains
two orthogonal projections of the same source distribution: (a) simulated sources, (b) reconstruction
by evidence optimisation, (c) beamformer reconstruction (powers have been compressed to make
smaller sources more visible)
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Figure 2: Source waveforms at active locations. Sources are numbered from left to right in the brain.
Thetwo traces for each location show the dipole components in two orthogonal directions. (a) simu-
lated waveforms; (b) waveforms reconstructed by our novel algorithm; (c) waveforms reconstructed
by beamforming (at the simulated locations)
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Figure 3: Source correlation coefficient matrices. Correlations were computed between epoch-
averaged dipole amplitude time-courses at each location. The size of each square indicates the mag-
nitude of the corresponding coefficient (the maximum value being 1), with whites squares positive
and black squares negative. (a) simulated sources; (b) sources reconstructed by our novel algorithm;
(c) sources reconstructed by beamforming.

5 Conclusions

We have demonstrated a novel evidence-optimisation approach to the location and recon-
struction of dipole sources contributing to MEG measurements. Unlike existing methods,
this new technique does not assume a correlation structure for the sources, instead estimat-
ing it from the data. As such, this approach holds great promise for high fidelity imaging
of correlated magnetic activity in the brain.
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