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Abstract

We study a method of optimal data-driven aggregation of classifiers in a
convex combination and establish tight upper bounds on its excess risk
with respect to a convex loss function under the assumption that the so-
lution of optimal aggregation problem is sparse. We use a boosting type
algorithm of optimal aggregation to develop aggregate classifiers of ac-
tivation patterns in fMRI based on locally trained SVM classifiers. The
aggregation coefficients are then used to design a ”boosting map” of the
brain needed to identify the regions with most significant impact on clas-
sification.

1 Introduction

We consider a problem of optimal aggregation (see [1]) of a finite set of base classifiers in
a complex aggregate classifier. The aggregate classifiers we study are convex combinations
of base classifiers and we are using boosting type algorithms as aggregation tools. Building
upon recent developments in learning theory, we show that such boosting type aggregation
yields a classifier with a small value of excess risk in the case when optimal aggregate
classifiers are sparse and that, moreover, the procedure provides reasonably good estimates
of aggregation coefficients. Our primary goal is to use this approach in the problem of
classification of activation patterns in functional Magnetic Resonance Imaging (fMRI) (see,
e.g., [2]).

In these problems it is of interest not only to classify the patterns, but also to determine
areas of the brain that are relevant for a particular classification task. Our approach is based



on splitting the image into a number of functional areas, training base classifiers locally in
each area and then combining them into a complex aggregate classifier. The aggregation
coefficients are used to create a special representation of the image we call theboosting
map of the brain. It is needed to identify the functional areas with the most significant
impact on classification.

Previous work has focused on classifying patterns within subject [2] and these pat-
terns were located in the occipital lobe. Here we are considering a different problem, that
is widely distributed patterns in multiple brain regions across groups of subjects. We use
prior knowledge from functional neuroanatomical brain atlases to subdivide the brain into
Regions of Interest, which makes this problem amenable to boosting. Classification across
subjects requires spatial normalization to account for inter-subject differences in brain size
and shape, but also needs to be robust with respect to inter-subject differences in activation
patterns –shape and amplitude.

Since fMRI patterns are very high dimensional and the amount of training data is
typically limited, some form of ”bet on sparsity” principle (”use a procedure that does well
in sparse problems, since no procedure does well in dense problems” see [3]) becomes
almost unavoidable and our theoretical analysis shows that boosting maps might have a
good chance of success in sparse problems (when only few functional areas are relevant for
classification).

2 Optimal aggregation of classifiers

Although we developed a multiclass extension of the method, for simplicity, we are dealing
here with a standard binary classification. Let(X,Y ) be a random couple with distribution
P, X being an instance in some spaceS (e.g., it might be an fMRI pattern) andY ∈
{−1, 1} being a binary label. Here and in what follows all the random variables are defined
on a probability space(Ω,Σ, P), E denotes the expectation. Functionsf : S 7→ R will
be used as classifiers,sign(f(x)) being a predictor of the label for an instancex ∈ S (no
decision is being made iff(x) = 0). The quantityP{(x, y) : yf(x) ≤ 0} (the probability
of misclassification or abstaining) is called the generalization error or the risk off. Suppose
thatH := {h1, . . . , hN} is a given family of classifiers taking values in[−1, 1]. Let

conv(H) :=

{ N
∑

j=1

λjhj :

N
∑

j=1

|λj | ≤ 1

}

be the symmetric convex hull ofH. One of the versions ofoptimal aggregation problem
would be to find a convex combinationf ∈ conv(H) that minimizes the generalization
error off in conv(H). For a givenf ∈ conv(H) its quality is measured by

E(f) := P{(x, y) : yf(x) ≤ 0} − inf
g∈conv(H)

P{(x, y) : yg(x) ≤ 0},

which is often called the excess risk off. Since the true distributionP of (X,Y ) is un-
known, the solution of the optimal aggregation problem is to be found based onthe training
data(X1, Y1), . . . , (Xn, Yn) consisting ofn independent copies of(X,Y ).

LetPn denote the empirical measure based on the training data, i.e.,Pn(A) represents
the frequency of training examples in a setA ⊂ S×{−1, 1}. In what follows, we denotePh
or Pnh the integrals of a functionh onS × {−1, 1} with respect toP or Pn, respectively.
We use the same notation for functions onS with an obvious meaning.

Since the generalization error is not known, it is tempting to try to estimate the optimal
convex aggregate classifier by minimizingthe training error Pn{(x, y) : yf(x) ≤ 0}
over the convex hullconv(H). However, this minimization problem is not computationally
feasible and, moreover, the accuracy of empirical approximation (approximation ofP by
Pn) over the class of sets{{(x, y) : yf(x) ≤ 0} : f ∈ conv(H)} is not good enough
whenH is a large class. An approach that allows one to overcome both difficulties and that



proved to be very successful in the recent years is to replace the minimization of the training
error by the minimization of the empirical risk with respect to a convex loss function. To
be specific, letℓ be a nonnegative decreasing convex function onR such thatℓ(u) ≥ 1 for
u ≤ 0. We will denote(ℓ • f)(x, y) := ℓ(yf(x)). The quantity

P (ℓ • f) =

∫

(ℓ • f)dP = Eℓ(Y f(X))

is called the risk off with respect to the lossℓ, or theℓ-risk of f. We will call a function

f0 :=

N
∑

j=1

λ0
jhj ∈ conv(H)

an ℓ-otimal aggregate classifierif it minimizes theℓ-risk overconv(H). Similarly to the
excess risk, one can define the excessℓ-risk of f as

Eℓ(f) := P (ℓ • f) − inf
g∈conv(H)

P (ℓ • g).

Despite the fact that we concentrate in what follows on optimizing the excessℓ-risk
(ℓ-optimal aggregation) it often provides also a reasonably good solution of the problem
of minimizing the generalization error (optimal aggregation), as it follows from simple
inequalities relating the two risks and proved in [4].

As before, sinceP is unknown, the minimization ofℓ-risk has to be replaced by the
corresponding empirical risk minimization problem

Pn(ℓ • f) =
1

n

n
∑

i=1

ℓ
(

Yjf(Xj)
)

−→ min, f ∈ conv(H),

whose solution̂f :=
∑N

j=1 λ̂jhj is calledan empiricalℓ-optimal aggregateclassifier.

We will show that iff0, f̂ are ”sparse” (i.e.,λ0
j , λ̂j are small for most of the values

of j), then the excessℓ-risk of the empiricalℓ-optimal aggregate classifier is small and,
moreover, the coefficients of̂f are close to the coefficients off0 in ℓ1-distance.

The sparsity assumption is almost unavoidable in many problems because of the ”bet
on sparsity” principle (see the Introduction).

At a more formal level, if there exists a small subsetJ ⊂ {1, 2, . . . , N} such that the
sets of random variables{Y, hj(X), j ∈ J} and{hj(X), j 6∈ J} are independent and, in
addition,Ehj(X) = 0, j 6∈ J, then, using Jensen’s inequality, it is easy to check that in an
ℓ-optimal aggregate classifierf0 one can takeλ0

j = 0, j 6∈ J.

We will define a measure of sparsity of a functionf :=
∑N

j=1 λjhj ∈ conv(H) that
is somewhat akin to sparsity charactersitics considered in [5, 6]. For0 ≤ d ≤ N, let

∆(f ; d) := min

{

∑

j 6∈J

|λj | : J ⊂ {1, . . . , N}, card(J) = d

}

and letβn(d) := d log(Nn/d)
n .

Define

dn(f) := min

{

d : 1 ≤ d ≤ N,
√

βn(d) ≥ ∆(d)

}

.

Of course, if there existsJ ⊂ {1, . . . , N} such thatλj = 0 for all j 6∈ J and
card(J) = d, thendn(f) ≤ d.

We will also need the following measure of linear independence of functions inH :

γ(d) := γ(H; d) =

(

inf
J⊂{1,...,N},card(J)=d

inf
∑

j∈J |αj |=1

∥

∥

∥

∥

∑

j∈J

αjhj

∥

∥

∥

∥

L2(P )

)−1

.



Finally, we need some standard conditions on the loss functionℓ (as, for instance, in
[4]). Assume thatℓ is Lipschitz on[−1, 1] with some constantL, |ℓ(u) − ℓ(v)| ≤ L|u −
v|, u, v ∈ [−1, 1], and the following condition on the convexity modulus ofℓ holds with
Λ ≤ L :

ℓ(u) + ℓ(v)

2
− ℓ

(

u + v

2

)

≥ Λ|u − v|2, u, v ∈ [−1, 1].

In fact, ℓ(u) is often replaced by a functionℓ(uM) with a large enoughM (in other
words, theℓ-risk is minimized overMconv(H)). This is the case, for instance, for so called
regularized boosting [7]. The theorem below applies to this case as well, only a simple
rescaling of the constants is needed.

Theorem 1 There exist constantsK1,K2 > 0 such that for allt > 0

P

{

Eℓ(f̂) ≥ K1
L2

Λ

(

βn(dn(f̂))
∧

√

log N

n
+

t

n

)}

≤ e−t

and

P

{ N
∑

j=1

|λ̂j − λ0
j | ≥ K2

L

Λ
γ(dn(f̂) + dn(f0))

√

βn(dn(f̂) + dn(f0)) +
t

n

}

≤ e−t.

Our proof requires some background material on localized Rademacher complexities
and their role in bounding of excess risk (see [8]). We defer it to the full version of the
paper. Note that the first bound depends only ondn(f̂) and the second ondn(f̂), dn(f0).
Both quantities can be much smaller thanN despite the fact that empirical risk minimiza-
tion occurs over the wholeN -dimensional convex hull. However, the approach to convex
aggregation based on minimization of the empiricalℓ-risk over the convex hull does not
guarantee that̂f is sparse even iff0 is. To address this problem, we also studied another
approach based on minimization of thepenalizedempiricalℓ-risk with the penalty based
on the number of nonzero coefficients of the classifier, but the size of the paper does not
allow us to discuss it.

3 Classification of fMRI patterns and boosting maps

We are using optimal aggregation methods described above in the problem of classification
of activation patterns in fMRI. Our approach is based on dividing the training data into
two parts: for local training and for aggregation. Then, we split the image intoN func-
tional areas and trainN local classifiersh1, . . . , hN based on the portions of fMRI data
corresponding to the areas. The data reserved for aggregation is then used to construct an
aggregate classifier. In applications, we are often replacing direct minimization of empirical
risk with convex loss by the standardAdaBoostalgorithm (see, e.g., [9]), which essentially
means choosing the loss function asℓ(u) = e−u. A weak (base) learner forAdaBoostsim-
ply chooses in this case a local classifier amongh1, . . . , hN with the smallest weighted
training error [in more sophisticated versions, we choose a local classifier at random with
probability depending on the size of its weighted training error] and after a number of
roundsAdaBoostreturns a convex combination of local classifiers. The coefficients of this
aggregate classifier are then used to create a new visual representation of the brain (the
boosting map) that highlights the functional areas with significant impact on classification.
In principle, it is also possible to use the same data for training of local classifiers and for
aggregation (retraining the local classifiers at each round of boosting), but this approach is
time consuming.

We use statistical parametric model (SPM) t-maps of MRI scans [10]. Statistical para-
metric maps (SPMs) are image processes with voxel1 values that are, under the null hypoth-
esis, distributed according to a known probability density function, usually the Student’s

1A voxel is the amplitude of a position in the 3-D MRI image matrix.



Figure 1:Masks used to split the image into functional areas in multi-slice and 3 orthogonal
slice display representations.

T or F distributions. These are known colloquially as t- or f-maps. Namely, one analyzes
each and every voxel using any standard (univariate) statistical test. The resulting statistical
parameters are assembled into an image - the SPM.

The classification system essentially transforms the t-map of the image into the boost-
ing map and at the same time it returns the aggregate classifier. The system consists ofthe
data preprocessing blockthat splits the image into functional areas based on specified
masks, and also splits the data into portions corresponding to the areas. In one of our exam-
ples, we use the main functional areasbrainstem,cerebellum,occipital, temporal,parietal,
subcorticalandfrontal. We split these masks in left and right, having in total 14 of them.
The classifier blockthen trains local classifiers based on local data (in the current version
we are using SVM classifiers). Finally,the aggregation or boosting blockcomputes and
outputs the aggregate classifier and the boosting map of the image. We developed a ver-
sion of the system that deals with multi-class problems in spirit of [11], but the details go
beyond the scope of this paper. The architecture of the network allows us also to train it
sequentially. Letf be a classifier produced by the network in the previous round of work,
let (X1, Y1), . . . , (Xn, Yn) be either the same or a new training data set and leth1, . . . , hN

be local classifiers (based either on the same, or on a new set of masks). Then one can
assign to the training examples the initial weightswj = e−Yjf(Xj)

Z , whereZ is a standard
normalizing constant, instead of usually chosen uniform weights. After this, theAdaBoost
can proceed in a normal fashion creating at the end an aggregate off and of new local clas-
sifiers. The process can be repeated recursively updating both the classifier and the boosting
map.
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Figure 2:Left and center: Patterns corresponding to two classes of data. Right: Locations
of the learners chosen by the boosting procedure (white spots). The background image
corresponds to the two patterns of left and center figures superimposed.



5 10 15 20 25 30 35

5

10

15

20

25

30

35

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 3:Patterns corrupted with noise in the gaussian parameters, artifacts, and additive
noise used in the synthetic data experiment.

Figure 4:Two t-maps corresponding to visual (left) and motor activations in the same
subject used in the real data experiment.

As a synthetic data example, we generate40× 40 pixels images of two classes. Each
class of images consists of three gaussian clusters placed in different positions. We generate
the set of images by adding gaussian noise of standard deviation0.1 to the standard devi-
ation and position of the clusters. Then, we add10 more clusters with random parameters,
and finally, additive noise of standard deviation 0.1. Figure 2 (left and center) shows the
averages of class 1 and class 2 images respectively. Two samples of the images can be seen
in Figure 3

We apply a base learner to each one of the1600 pixels of the images. Learners have
been trained with200 data,100 of each class, and the aggregation has been trained with
200 more data. The classifier has been tested with200 previously unknown data. The error
averaged over 100 trials is of9.5%. The same experiment has been made with a single linear
SVM, producing an error which exceeds20%, although this rate can be slightly improved
by selectingC by cross validation.

The resulting boosting map can be seen in Fig. 2 (right). As a proof of concept, we
remark that the map is able to focus in the areas in which the clusters corresponding to each
class are, discarding those areas in which only randomly placed clusters are present.

In order to test the algorithm in a real fMRI experiment, we use 20 images taken from
10 healthy subjects on a 1.5 Tesla Siemens Sonata scanner. Stimuli were presented via MR
compatible LCD goggles and headphones. The paradigm consists of four interleaved tasks:
visual (8 Hz checkerboard stimulation), motor (2 Hz right index finger tapping), auditory



Figure 5:Boosting map of the brain corresponding to the classification problem with visual
and motor activations. Darker regions correspond to higher values.

left brainstem: 0 right brainstem: 0
left cerebellum: 0.15 right cerebellum: 0.16
left parietal: 0.02 right parietal: 0.06
left temporal: 0.03 right temporal: 0.15
left occipital: 0.29 right occipital: 0.15
left subcortical: 0 right subcortical: 0
left frontal: 0 right frontal: 0

Table 1: Values of the convex aggregation.

(syllable discrimination) and cognitive (mental calculation). These tasks are arranged in
randomized blocks (8 s per block). Finger tapping in the motor task was regulated with
an auditory tone, subjects were asked to tap onto a button-response pad. During the audi-
tory task, subjects were asked to respond on a button-response pad for each ”Ta” (25%of
sounds), but not to similar syllables. Mental calculation stimuli consisted of three single-
digit numbers heard via headphone. Participants had to sum them and divide by three,
responding by button press when there was no remainder (50%of trials).

Functional MRI data were acquired using single-shot echo-planar imaging with TR:
2 s, TE: 50 ms, flip angle: 90 degrees, matrix size:64 × 64 pixels, FOV: 192 mm. Slices
were 6 mm thick, with25% gap, 66 volumes were collected for a total measurement time
of 132 sec per run. Statistical parametric mapping was performed to generate t-maps that
represent brain activation changes.

The t-maps are lowpass filtered and undersampled to obtain32×32×24 t-maps (Fig.
4). The resulting t-maps are masked to obtain 14 subimages, then the data is normalized
in amplitude. We proceed as mentioned to train a set of 14 Support Vector Machines. The
used kernel is a gaussian one withσ = 2 andC = 10. These parameters have been chosen
to provide an acceptable generalization. A convex aggregation of the classifier outputs is
then trained.

We tested the algorithm in binary classification of visual against auditory activations.
We train the base learners with10 images, and the boosting with9. Then, we train the
base learners again with19, leaving one for testing. We repeat the experiment leaving
out a different image each trial. None of the images was misclassified. The values for the
aggregation are in Table 1. The corresponding boosting map is shown in Fig 5. It highlights
the right temporal and both occipital areas, where the motor and visual activations are



present (see Fig. 4). Also, there is activation in the cerebellum area in some of the motor
t-maps, which is highlighted by the boosting map.

In experiments for the six binary combination of activation stimuli, the average error
was less than10%. This is an acceptable result if we take into account that the data included
ten different subjects, whose brain activation patterns present noticeable differences.

4 Future goals

Boosting maps we introduced in this paper might become a useful tool in solving classifi-
cation problems for fMRI data, but there is a number of questions to be answered before it
is the case. The most difficult problem is the choice of functional areas and local classifiers
so that the ”true” boosting map is identifiable based on the data. As our theoretical analysis
shows, this is related to the degree of linear independence of local classifiers quantified by
the functionγ(d). If γ(d) is too large ford = dn(f0) ∨ dn(f̂), the empirical boosting map
can become very unstable and misleading. In such cases, there is a challenging model selec-
tion problem (how to choose a ”good” subset ofH or how to splitH into ”almost linearly
independent clusters” of functions) that has to be addressed to develop this methodology
further.
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