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Abstract

We study the synthesis of neural coding, selective attention and percep-
tual decision making. A hierarchical neural architecture is proposed,
which implements Bayesian integration of noisy sensory input and top-
down attentional priors, leading to sound perceptual discrimination. The
model offers an explicit explanation for the experimentally observed
modulation that prior information in one stimulus feature (location) can
have on an independent feature (orientation). The network’s intermediate
levels of representation instantiate known physiological properties of vi-
sual cortical neurons. The model also illustrates a possible reconciliation
of cortical and neuromodulatory representations of uncertainty.

1 Introduction

A constant stream of noisy and ambiguous sensory inputs bombards our brains, informing
on-going inferential processes and directing perceptual decision-making. Neurophysiolo-
gists and psychologists have long studied inference and decision-making in isolation, as
well as the careful attentional filtering that is necessary to optimize them. The recent focus
on their interactions poses an important opportunity and challenge for computational mod-
els. In this paper, we study an attentional task which involves all three components, and
thereby directly confront their interaction. We first discuss the background of the individual
elements; then describe our model.

The first element involves the representation and manipulation of uncertainty in sensory
inputs and contextual information. There are two broad families of suggestions. One is mi-
croscopic, for which individual cortical neurons and populations either implicitly or explic-
itly represent the uncertainty. This spans a broad spectrum, from distributional codes that
can also encode restricted aspects of uncertainty [1] to more exotic interpretations of codes
as representing complex distributions [1, 2, 3, 4, 5]. The other family is macroscopic, with
cholinergic (ACh) and noradrenergic (NE) neuromodulatory systems reporting computa-
tionally distinct forms of uncertainty to influence the way that information in differentially
reliable cortical areas is integrated and learned [6, 7]. How microscopic and macroscopic
families work together is hitherto largely unexplored.

The second element is selective attention and top-down influences over sensory processing.
Here, the key challenge is to couple the many ideas about the way that attention should,
from a sound statistical viewpoint, modify sensory processing, to the measurable effects of
attention on the neural substrate. For instance, one typical consequence of (visual) featural
and spatial attention is an increase in the activities of neurons in cortical populations repre-



senting those features, which is equivalent to multiplying their tuning functions by a factor
[8]. Under the sort of probabilistic representational scheme in which the population activity
codes for uncertainty in the underlying variable, it is of obvious importance to understand
how this multiplication changes the implied uncertainty, and what statistical characteristic
of the attention licenses this change [9].

The third element is the coupling between sensory processing and perceptual decisions.
Implementational and computational issues underlying binary decisions, especially in sim-
ple cases, have been extensively explored, with psychologists [11, 12], and neuroscientists
[13, 14] converging on common statistical [10] ideas about drift-diffusion processes.

In order to explore the interaction of these elements, we model an extensively studied atten-
tional task (due to Posner [15]), in which probabilistic spatial cueing is used to manipulate
attentional modulation of visual discrimination. We employ a hierarchical neural architec-
ture in which top-down attentional priors are integrated with sequentially sampled sensory
input in a sound Bayesian manner, using a logarithmic mapping between cortical neural
activities and uncertainty [4]. In the model, the information provided by the cue is realized
as a change in the prior distribution over the cued dimension (space). The effect of the
prior is to eliminate inputs from spatial locations considered irrelevant for the task, thus
improving discrimination in another dimension (orientation).

In section 2, we introduce the Posner task and give a Bayesian description of the computa-
tions underlying successful performance. In section 3, we describe the probabilistic seman-
tics of the layers, and their functional connections, in the hierarchical neural architecture.
In section 4, we compare the perceptual performance of the network to psychophysics data,
and the intermediate layers’ activities to the relevant physiological data.

2 Spatial Attention asPrior Information

In the classic version of Posner’s task [15], a subject is presented with a cue that predicts
the location of a subsequent target with a certain probability termed its validity. The cue is
valid if it makes a correct prediction, and invalid otherwise. Subjects typically perform de-
tection or discrimination on the target more rapidly and accurately on a valid-cue trial than
an invalid one, reflecting cue-induced attentional modulation of visual processing and/or
decision making [15]. This difference in reaction time or accuracy is often termed the
validity effect [16], and depends on the cue validity [17].

We consider sensory stimuli with two feature dimensions, a periodic variable, orientation,
¢ = ¢*, about which decisions are to be made, and a linear variable, space, i = p* which
is cued. The cue induces a top-down spatial prior, which we model as a mixture of a com-
ponent sharply peaked at the cued location and a broader component capturing contextual
and bottom-up saliency factors (including the possibility of invalidity). For simplicity, we
use a Gaussian for the peaked component, and a uniform distribution for the broader one,
although more complex priors of a similar nature would not change the model behavior:
p(p) =N (f1,v%) + (1—7)c. Given lower-layer activation patterns X; = {x, ...,x;}, as-
sumed to be iid samples (with Gaussian noise) of bell-shaped tuning responses to the true
underlying stimulus values 1, ¢*: fi; (1" ¢*) = Z exp(—(pui—p*)? /207, +k cos(¢;—¢*)),
the task is to infer a posterior distribution P(4|X:), involving the following steps:

p(xelp, @) = [ p(wi; ()|, ¢)  Likelihood
p(o|x:) = [ p(i, d)p(x¢|p, ¢)dp  Prior-weighted marginalization
(0| Xy) o p(o|xiH)p(u, ¢|x;)  Temporal accumulation

Because the marginalization step is weighted by the priors, a valid cue results in the inte-
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Figure 1: A Bayesian neurd architecture. Layer | activities represent the log likelihood of the data
given each possible setting of 1; and ¢;. Thisgives anoisy version of the smooth bell-shaped tuning
curve (shown on the left). In layer 11, the log likelihood of each 1; and ¢; is modulated by the prior
information log P(u;), shown on the upper left. The prior in y strongly suppresses the noisy input
in the irrelevant part of the p dimension, thus enabling improved inference based on the underlying
tuning response f;;. The layer 111 neurons represent the log marginal posterior of ¢ by integrating
out the 1 dimension of layer Il activities. Layer IV neurons combine recurrent information and
feedforward input from layer 111 to compute the log marginal posterior given all data so far observed.
Layer V computes the cumulative posterior distribution of ¢ using a softmax operation. Due to the
strong nonlinearity of softmax, itsactivity is much more peaked than in layer 11 and V. Solid linesin
the diagram represent excitatory connections, dashed lines inhibitory. Blue circles illustrate how the
activities of onerow of inputsin Layer | travel sthrough the hierarchy to affect the fi nal decision layer.
Brown circlesillustrate how one unit in the spatial prior layer comes into the integration process.

gration of more “signal” and less “noise” into the marginal posterior, whereas the opposite
results from an invalid cue. To turn this on-line posterior into a decision ¢, we use an ex-
tension of the Sequential Probability Ratio Test (SPRT [10]): observe x1, x5, ... until the
first time that max P(¢;|X;) exceeds a fixed threshold ¢, then terminate the observation
process and report ¢= argmaxP(¢;|X;) as the estimate of ¢ for the current trial.

3 A Bayesian Neural Architecture

The neural architecture implements the above computational steps exactly through a loga-
rithmic transform, and has five layers (Fig 1). In layer I, activity of neuron i, r}j (t), reports
the log likelihood, log p(x:|1, ¢;) (throughout, we discretize space and orientation). Layer
I combines this log likelihood information with the prior, 77, (t) =7, (t) +log P(u;) + at,
to yield the joint log posterior up to an additive constant a, that makes min rfj =0. Layer
I11 performs the marginalization rf (t)=log ", exp(r?j) -+0b¢, to give the marginal posterior
in ¢ (up to a constant b, that makes min rf(t) =0). While this step (’log-of-sums’) looks
computationally formidable for neural hardware, it has been shown [4] that under certain
conditions it can be well approximated by a (weighted) ’sum-of-logs’ r? t)=>,; cir% + by,
where ¢; are weights optimized to minimize approximation error. Layer IV neurons com-
bine recurrent information and feedforward input from layer I11 to compute the log marginal
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Figure 2: Validity effect and dependence on . (a) The distribution of reaction times for the invalid
condition (v = 0.5) has a greater mean and longer tail than the valid condition in model simulation
results (top). Compare to similar results (bottom) from a Posner task in rats [18]. (b) Distribution of
inferred ¢ is more tightly clustered around the true ¢* (red dashed line) in valid case (blue) than the
invalid case (red). v = 0.75 (c) Validity effect, in both reaction time (top) and error rate (bottom)
increaseswith increasing v. {u;} = {—1.5,—1.4,...,1.5}, {¢;} = {n/8,2n/8, ..., 167 /8}, oy =
0.1,04 = ©/16, ¢ = 0.90, p* = 0.5, v € {0.5,.75,.99}, v = 0.05, 300 trials each of valid and
invalid trials. 100 trials of each v value.

posterior given all data so far observed, r?(t) :r?(t— 1)+ r?(t) + ¢4, up to a constant c;.
Finally, layer V neurons perform a softmax operation to retrieve the exact marginal poste-
rior, 72(t) =exp(rj)/ >, exp(ri) = P(¢;|X;), with the additive constants dropping out.
Note that a pathway parallel to 111-1V-V consisting of neurons that only care about x and
not ¢ can be constructed in exactly the same manner. Its corresponding layers would report
log p(x¢, i), log p(Xs, 1), and p(u;]X:). An example of activities at each layer of the
network, along with the choice of prior p() and tuning function f;;, is shown in Fig 1.

4 Results

We first verify that the model indeed exhibits the cue-induced validity effect, ie shorter RT
and greater accuracy for valid-cue trials than invalid ones. “Reaction time” on a trial is the
number of iid samples necessary to reach a decision, and “error rate” is the average angular
distance between the estimated ¢ and the true ¢*. Figure 2 shows simulation results for 300
trials each of valid and invalid cue trials, for different values of ~, reflecting the model’s
belief as to cue validity. Reassuringly, the RT distribution for valid-cue trials distribution is
tighter and left-shifted compared to invalid-cue trials (Figure 2(a), top panel), as observed
in experimental data [15, 18] (Fig 2(a), bottom panel); (b) shows that accuracy is also
higher for valid-cue trials. Consistent with data from a human Posner task [17], (c) shows
that the VE increases with increasing perceived cue validity, as parameterized by -, in both
reaction times and error rates (precluding a simple speed-error trade-off).

Since we have an explicit model of not only the “behavioral output” but also the whole
neural hierarchy, we can relate activities at various levels of representation to existing phys-
iological data. Ample evidence indicates that spatial attention to one side of the visual field
increases stimulus-induced activities in the corresponding part of the visual cortex [19, 20].
Fig 3(a) shows that our model qualitatively reproduces this effect; indeed it increases with
~, the perceived cue validity. Electrophysiological data also shows that spatial attention
has a multiplicative effect on orientation tuning responses in visual cortical neurons [8]
(Fig 3(b)). We see a similar phenomenon in the layer IV neurons (Fig 3(c); layer Il simi-
lar, data not shown). Fig 3(d) is a scatter-plot of (log p(x;, ¢;)+c1), for the valid condition
versus the invalid condition, for various values of -, along with the slope fit to the exper-
iment of Fig 3(b) (Layer Il similar, data not shown). The linear least square error fits are
good, and the slope increases with increasing confidence in the cued location (larger «). In
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Figure 3: Multiplicative gain modulation by spatial attention. (&) r;"j activities, averaged over the half
of layer 1l where the prior peaks, are greater for valid (blue, left) than invalid (red, right) conditions.
(b) Experimentally observed multiplicative modulation of V4 orientation tunings by spatial attention
[8]. (c) Similar multiplicative effect in layer 1V in the model. (d) Linear fi ts to scatter-plot of layer
111 activities for valid cue condition vs. invalid cue condition show that the slope is greatest for large
~ and smallest for small v (magenta: v = 0.99, blue: v = 0.75, red: v = 0.5, black: linear fit to
study in (b)). Simulation parameters are same asin Fig 2. Error bars: standard errors of the mean.

the model, the slope not only depends on ~ but also the noise model, the discretization, and
so on, so the comparison of Figure 3(d) should be interpreted loosely.

In valid cases, the effect of attention is to increase the certainty in the posterior marginal
over ¢, since the correct prior allows the relative suppression of noisy input from the irrel-
evant part of space. Were the posterior marginal exactly Gaussian, the increased certainty
would translate into a decreased variance. For Gaussian probability distributions, logarith-
mic coding amounts to something close to a quadratic (adjusted for the circularity of ori-
entation), with a curvature determined by the variance. Decreasing the variance increases
the curvature, and therefore has a multiplicative effect on the activities (as in figure 3).

The approximate gaussianity of the marginal posterior comes from the accumulation of
many independent samples over time and space, and something like the central limit theo-
rem. While it is difficult to show this multiplicative modulation rigorously, we can at least
demonstrate it mathematically for the case where the spatial prior is very sharply peaked at
its Gaussian mean 3. In this case, ((log p1(x(t), ¢;)),+c1)/({log p2(x(t), ¢;)),+c2) = R,
where c1, ¢, and R are constants independent of ¢; and p,;. Based on the peaked prior as-

sumption, p(p) ~ 0(n—f), we have p(x(t), ¢) = [ p(x(t)|n, d)p(n)p(¢) = p(x(t)|$, f1).
We can expand log p(x(t)|fi, ¢) and compute its average over time

Qogp(e(Dlf, ), = C — ooy (s ',67) — Fu(B o)), (@

Then using the tuning function defined earlier, we can compare the joint probabilities given
valid (val) and invalid (inv) cues:

<logpva| (x(t), ¢)>t B ap —f3 <€7(Hi*#*)2/a;2m>i <9(¢)>j @
<10gpinv(x(t)>¢)>t a Qg — ﬂ<e—((m—u*)2+(m—;2)2)/203> <9(¢)>j’

i

<10gpval(xta ¢)>t +c1 ~ 6(“*_[‘)2/(4‘73) _ R 3)
<10g Pinv (xt7 ¢)>t + co
The derivation for a multiplicative effect on layer IV activities is very similar.

and therefore,

Another aspect of intermediate representation of interest is the way attention modifies the
evidence accumulation process over time. Fig 4 show the effect of cueing on the activities
of neuron r2.(t), or P(¢*|X,), for all trials with correct responses. The mean activity
trajectory is higher for the valid cue case than the invalid one: in this case, spatial atten-
tion mainly acts through increasing the rate of evidence accumulation after stimulus onset
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Figure 4: Accumulation of iid samplesin orientation discrimination, and dependence on prior belief
about stimulus location. (a-c) Average activity of neuron 5., which represents P(¢*|X;), saturates
to 100% certainty much faster for valid cue trials (blue) than invalid cue trials (red). The difference
is more drastic when ~y is larger, or when there is more prior confi dence in the cued target location.
@ ~=0.5, (b) y=0.75, (c) v = 0.99. Cyan dashed line indicates stimulus onset. (d) First 15
time steps (from stimulus onset) of the invalid cue traces from (a-c) are aligned to stimulus onset;
cyan line denotes stimulus onset. The differential rates of rise are apparent. (€) Last 8 time steps of
the invalid traces from (a-c) are aligned to decision threshold-crossing; there is no clear separation
as a function . (f) Multiplicative gain modulation of attention on V4 orientation tuning curves.
Simulation parameters are same asin Fig 2.

(steeper rise). This attentional effect is more pronounced when the system is more con-
fident about its prior information ((a) v = 0.5, (b) v = 0.75, (c) v = 0.99). Effectively,
increasing ~y for invalid-cue trials is increasing input noise. Figure 4 (d) shows the average
traces for invalid-cueing trials aligned to the stimulus onset and (e) to the decision threshold
crossing. These results bear remarkable similarities to the LIP neuronal activities recorded
during monkey perceptual decision-making [13] (shown in (f)). In the stimulus-aligned
case, the traces rise linearly at first and then tail off somewhat, and the rate of rise increases
for lower (effective) noise. In the decision-aligned case, the traces rise steeply and together.
All these characteristics can also be seen in the experimental results in (f), where the input
noise level is explicitly varied.

5 Discussion

We have presented a hierarchical neural architecture that implements optimal probabilistic
integration of top-down information and sequentially observed data. We consider a class
of attentional tasks for which top-down modulation of sensory processing can be concep-
tualized as changes in the prior distribution over implicit stimulus dimensions. We use the
specific example of the Posner spatial cueing task to relate the characteristics of this neural
architecture to experimental literature. The network produces a reaction time distribution
and error rates that qualitatively replicate experimental data. The way these measures de-
pend on valid versus invalid cueing, and on the exact perceived validity of the cue, are
similar to those observed in attentional experiments. Moreover, the activities in various



levels of the hierarchy resemble electrophysiologically recorded activities in the visual cor-
tical neurons during attentional modulation and perceptual discrimination, lending farther
credence to the particular encoding and computational mechanisms that we have proposed.
In particular, the intermediate layers demonstrate a multiplicative gain modulation by at-
tention, as observed in primate V4 neurons [8]; and the temporal behavior of the final layer,
representing the marginal posterior, qualitative replicates the experimental observation that
LIP neurons show noise-dependent firing rate increase when aligned to stimulus onset, and
noise-independent rise when aligned to the decision [13].

Our results illustrate the important concept that priors in a variable in one dimension (space)
can dramatically alter the inferential performance in a completely independent variable
dimension (orientation). In this case, the spatial prior affects the marginal posterior over ¢
by altering the relative importance of joint posterior terms in the marginalization process.
This leads to the difference in performance between valid and invalid trials, a difference
that increases with ~. This model elaborates on an earlier phenomenological model [9], by
showing explicitly how marginalizing (in layer I11) over activities biased by the prior (in
layer I1) produces the effect.

This work has various theoretical and experimental implications. The model presents one
possible reconciliation of cortical and neuromodulatory representations of uncertainty. The
sensory-driven activities (layer | in this model) themselves encode bottom-up uncertainty,
including sensory receptor noise and any processing noise that have occurred up until then.
The top-down information, which specifies the Gaussian component of the spatial prior
p(p), involves two kinds of uncertainty. One determines the locus and spatial extent of
visual attention, the other specifies the relative importance of this top-down bias compared
to the bottom-up stimulus-driven input. The first is highly specific in modality and featural
dimension, presumably originating from higher visual cortical areas (eg parietal cortex for
spatial attention, inferotemporal cortex for complex featural attention). The second is more
generic and may affect different featural dimensions and maybe even different modalities
simultaneously, and is thus more appropriately signalled by a diffusely-projecting neuro-
modulator such as ACh. This characterization is also in keeping with our previous models
of ACh [21, 7] and experimental data showing that ACh selectively suppresses cortico-
cortical transmission relative to bottom-up processing in primary sensory cortices [22].

The perceptual decision strategy employed in this model is a natural multi-dimensional
extension of SPRT [10], by monitoring the first-time passage of any one of the posterior
values crossing a fixed decision threshold.. Note that the distribution of reaction times is
skewed to the right (Fig 2(a)), as is commonly observed in visual discrimination tasks [11].
For binary decision tasks modeled using continuous diffusion processes [10, 11, 12, 13, 14],
this skew arises from the properties of the first-passage time distribution (the time at which
a diffusion barrier is first breached, corresponding to a fixed threshold confidence level in
the binary choice). Our multi-choice decision-making realization of visual discrimination,
as an extension of SPRT, also retains this skewed first-passage time distribution. Given
that SPRT is optimal for binary decisions (smallest average response time for a given error
rate), and that MAP estimate is optimal for 0-1 loss, we conjecture that our particular n-dim
generalization of SPRT should be optimal for sequential decision-making under 0-1 loss.
This is an area of active research.

There are several important open issues. One is that of noise: our network performs exact
Bayesian inference when activities are deterministic. The potentially deleterious effects of
noise, particularly in log probability space, needs to be explored. Another important ques-
tion is how uncertainty in signal strength, including the absence of a signal, can be detected
and encoded. If the stimulus strength is unknown and can vary over time, then naive inte-
gration of bottom-up inputs ignoring the signal-to-noise ratio is no longer optimal. Based
on a slightly different task involving sustained attention or vigilance [23], Brown et al [24]
have made the interesting suggestion that one role for noradrenergic neuromodulation is



to implement a change in the integration strategy when a stimulus is detected. We have
also addressed this issue by ascribing to phasic norepinephrine a related but distinct role in
signaling unexpected state uncertainty (in preparation).
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