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Abstract
There is growing evidence from psychophysical and neurophysiological
studies that the brain utilizes Bayesian principles for inference and de-
cision making. An important open question is how Bayesian inference
for arbitrary graphical models can be implemented in networks of spik-
ing neurons. In this paper, we show that recurrent networks of noisy
integrate-and-fire neurons can perform approximate Bayesian inference
for dynamic and hierarchical graphical models. The membrane potential
dynamics of neurons is used to implement belief propagation in the log
domain. The spiking probability of a neuron is shown to approximate the
posterior probability of the preferred state encoded by the neuron, given
past inputs. We illustrate the model using two examples: (1) a motion de-
tection network in which the spiking probability of a direction-selective
neuron becomes proportional to the posterior probability of motion in
a preferred direction, and (2) a two-level hierarchical network that pro-
duces attentional effects similar to those observed in visual cortical areas
V2 and V4. The hierarchical model offers a new Bayesian interpretation
of attentional modulation in V2 and V4.

1 Introduction
A wide range of psychophysical results have recently been successfully explained using
Bayesian models [7, 8, 16, 19]. These models have been able to account for human re-
sponses in tasks ranging from 3D shape perception to visuomotor control. Simultaneously,
there is accumulating evidence from human and monkey experiments that Bayesian mecha-
nisms are at work during visual decision making [2, 5]. The versatility of Bayesian models
stems from their ability to combine prior knowledge with sensory evidence in a rigorous
manner: Bayes rule prescribes how prior probabilities and stimulus likelihoods should be
combined, allowing the responses of subjects or neural responses to be interpreted in terms
of the resulting posterior distributions.

An important question that has only recently received attention is how networks of corti-
cal neurons can implement algorithms for Bayesian inference. One powerful approach has
been to build on the known properties of population coding models that represent informa-
tion using a set of neural tuning curves or kernel functions [1, 20]. Several proposals have
been made regarding how a probability distribution could be encoded using population
codes ([3, 18]; see [14] for an excellent review). However, the problem of implementing
general inference algorithms for arbitrary graphical models using population codes remains
unresolved (some encouraging initial results are reported in Zemel et al., this volume). An



alternate approach advocates performing Bayesian inference in the log domain such that
multiplication of probabilities is turned into addition and division to subtraction, the latter
operations being easier to implement in standard neuron models [2, 5, 15] (see also the
papers by Deneve and by Yu and Dayan in this volume). For example, a neural implemen-
tation of approximate Bayesian inference for a hidden Markov model was investigated in
[15]. The question of how such an approach could be generalized to spiking neurons and
arbitrary graphical models remained open.

In this paper, we propose a method for implementing Bayesian belief propagation in net-
works of spiking neurons. We show that recurrent networks of noisy integrate-and-fire
neurons can perform approximate Bayesian inference for dynamic and hierarchical graph-
ical models. In the model, the dynamics of the membrane potential is used to implement
on-line belief propagation in the log domain [15]. A neuron’s spiking probability is shown
to approximate the posterior probability of the preferred state encoded by the neuron, given
past inputs. We first show that for a visual motion detection task, the spiking probability
of a direction-selective neuron becomes proportional to the posterior probability of motion
in the neuron’s preferred direction. We then show that in a two-level network, hierarchical
Bayesian inference [9] produces responses that mimic the attentional effects seen in visual
cortical areas V2 and V4.

2 Modeling Networks of Noisy Integrate-and-Fire Neurons
2.1 Integrate-and-Fire Model of Spiking Neurons
We begin with a recurrently-connected network of integrate-and-fire (IF) neurons receiving
feedforward inputs denoted by the vector I. The membrane potential of neuron i changes
according to:
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where τ is the membrane time constant, Ij denotes the synaptic current due to input neuron
j, wij represents the strength of the synapse from input j to recurrent neuron i, v′

j de-
notes the synaptic current due to recurrent neuron j, and uij represents the corresponding
synaptic strength. If vi crosses a threshold T , the neuron fires a spike and vi is reset to the
potential vreset. Equation 1 can be rewritten in discrete form as:
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where ε is the integration rate, u′

ii = 1 + ε(uii − 1) and for i 6= j, u′

ij = εuij .

A more general integrate-and-fire model that takes into account some of the effects of non-
linear filtering in dendrites can be obtained by generalizing Equation 3 as follows:

vi(t + 1) = f
(

∑

j

wijIj(t)
)

+ g
(

∑

j

u′

ijv
′

j(t)
)

(4)

where f and g model potentially different dendritic filtering functions for feedforward and
recurrent inputs.

2.2 Stochastic Spiking in Noisy IF Neurons
To model the effects of background inputs and the random openings of membrane channels,
one can add a Gaussian white noise term to the right hand side of Equations 3 and 4. This
makes the spiking of neurons in the recurrent network stochastic. Plesser and Gerstner [13]
and Gerstner [4] have shown that under reasonable assumptions, the probability of spiking



in such noisy neurons can be approximated by an “escape function” (or hazard function)
that depends only on the distance between the (noise-free) membrane potential vi and the
threshold T . Several different escape functions were studied. Of particular interest to the
present paper is the following exponential function for spiking probability suggested in [4]
for noisy integrate-and-fire networks:

P (neuron i spikes at time t) = ke(vi(t)−T )/c (5)
where k and c are arbitrary constants. We used a model that combines Equations 4 and 5
to generate spikes, with an absolute refractory period of 1 time step.

3 Bayesian Inference using Spiking Neurons
3.1 Inference in a Single-Level Model
We first consider on-line belief propagation in a single-level dynamic graphical model and
show how it can be implemented in spiking networks. The graphical model is shown in
Figure 1A and corresponds to a classical hidden Markov model. Let θ(t) represent the
hidden state of a Markov model at time t with transition probabilities given by P (θ(t) =
θi|θ(t − 1) = θj) = P (θt

i |θ
t−1
j ) for i, j = 1 . . . N . Let I(t) be the observable output

governed by the probabilities P (I(t)|θ(t)). Then, the forward component of the belief
propagation algorithm [12] prescribes the following “message” for state i from time step t
to t + 1:
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i = P (I(t)|θt

i)
∑
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If m0,1
i = P (θi) (the prior distribution over states), then it is easy to show using Bayes

rule that mt,t+1
i = P (θt

i , I(t), . . . , I(1)). If the probabilities are normalized at each update
step:
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where nt−1,t =
∑

j mt−1,t
j , then the message becomes equal to the posterior probability

of the state and current input, given all past inputs:

mt,t+1
i = P (θt

i , I(t)|I(t − 1), . . . , I(1)) (8)

3.2 Neural Implementation of the Inference Algorithm
By comparing the membrane potential equation (Eq. 4) with the on-line belief propaga-
tion equation (Eq. 7), it is clear that the first equation can implement the second if belief
propagation is performed in the log domain [15], i.e., if:

vi(t + 1) ∝ log mt,t+1
i (9)
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In this model, the dendritic filtering functions f and g approximate the logarithm func-
tion1, the synaptic currents Ij(t) and v′

j(t) are approximated by the corresponding instan-
taneous firing rates, and the recurrent synaptic weights u′

ij encode the transition probabil-
ities P (θt

i |θ
t−1
j ). Normalization by nt−1,t is implemented by subtracting log nt−1,t using

inhibition.
1An alternative approach, which was also found to yield satisfactory results, is to approximate the

log-sum with a linear weighted sum [15], the weights being chosen to minimize the approximation
error.
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Figure 1: Graphical Models and their Neural Implementation. (A) Single-level dynamic graph-
ical model. Each circle represents a node denoting the state variable θt which can take on values
θ1, . . . , θN . (B) Recurrent network for implementing on-line belief propagation for the graphical
model in (A). Each circle represents a neuron encoding a state θi. Arrows represent synaptic con-
nections. The probability distribution over state values at each time step is represented by the entire
population. (C) Two-level dynamic graphical model. (D) Two-level network for implementing on-
line belief propagation for the graphical model in (C). Arrows represent synaptic connections in the
direction pointed by the arrow heads. Lines without arrow heads represent bidirectional connections.

Finally, since the membrane potential vi(t+1) is assumed to be proportional to log mt,t+1
i

(Equation 9), we have:
vi(t + 1) = c log mt,t+1

i + T (12)

for some constants c and T . For noisy integrate-and-fire neurons, we can use Equation 5 to
calculate the probability of spiking for each neuron i as:

P (neuron i spikes at time t + 1) ∝ e(vi(t+1)−T )/c (13)

= elog mt,t+1

i = mt,t+1
i (14)

Thus, the probability of spiking (or equivalently, the instantaneous firing rate) for neuron i
in the recurrent network is directly proportional to the posterior probability of the neuron’s
preferred state and the current input, given all past inputs. Figure 1B illustrates the single-
level recurrent network model that implements the on-line belief propagation equation 7.

3.3 Hierarchical Inference
The model described above can be extended to perform on-line belief propagation and
inference for arbitrary graphical models. As an example, we describe the implementation
for the two-level hierarchical graphical model in Figure 1C.

As in the case of the 1-level dynamic model, we define the following “messages” within a
particular level and between levels: mt,t+1

1,i (message from state i to other states at level 1
from time step t to t + 1), mt

1→2,i (“feedforward” message from state i at level 1 sent to

level 2 at time t), mt,t+1
2,i (message from state i to other states at level 2 from time step t

to t + 1), and mt
2→1,i (“feedback” message from state i at level 2 sent to level 1 at time

t). Each of these messages can be calculated based on an on-line version of loopy belief
propagation [11] for the multiply connected two-level graphical model in Figure 1C:
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Note the similarity between the last equation and the equation for the single-level model
(Equation 6). The equations above can be implemented in a 2-level hierarchical recurrent
network of integrate-and-fire neurons in a manner similar to the 1-level case. We assume
that neuron i in level 1 encodes θ1,i as its preferred state while neuron i in level 2 en-
codes θ2,i. We also assume specific feedforward and feedback neurons for computing and
conveying mt

1→2,i and mt
2→1,i respectively.

Taking the logarithm of both sides of Equations 17 and 18, we obtain equations that can
be computed using the membrane potential dynamics of integrate-and-fire neurons (Equa-
tion 4). Figure 1D illustrates the corresponding two-level hierarchical network. A modifica-
tion needed to accommodate Equation 17 is to allow bilinear interactions between synaptic
inputs, which changes Equation 4 to:
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Multiplicative interactions between synaptic inputs have previously been suggested by sev-
eral authors (e.g., [10]) and potential implementations based on active dendritic interactions
have been explored. The model suggested here utilizes these multiplicative interactions
within dendritic branches, in addition to a possible logarithmic transform of the signal be-
fore it sums with other signals at the soma. Such a model is comparable to recent models
of dendritic computation (see [6] for more details).

4 Results
4.1 Single-Level Network: Probabilistic Motion Detection and Direction Selectivity
We first tested the model in a 1D visual motion detection task [15]. A single-level recurrent
network of 30 neurons was used (see Figure 1B). Figure 2A shows the feedforward weights
for neurons 1, . . . , 15: these were recurrently connected to encode transition probabili-
ties biased for rightward motion as shown in Figure 2B. Feedforward weights for neurons
16, . . . , 30 were identical to Figure 2A but their recurrent connections encoded transition
probabilities for leftward motion (see Figure 2B). As seen in Figure 2C, neurons in the
network exhibited direction selectivity. Furthermore, the spiking probability of neurons
reflected the posterior probabilities over time of motion direction at a given location (Fig-
ure 2D), suggesting a probabilistic interpretation of direction selective spiking responses in
visual cortical areas such as V1 and MT.

4.2 Two-Level Network: Spatial Attention as Hierarchical Bayesian Inference

We tested the two-level network implementation (Figure 1D) of hierarchical Bayesian in-
ference using a simple attention task previously used in primate studies [17]. In an input
image, a vertical or horizontal bar could occur either on the left side, right side, or both
sides (see Figure 3). The corresponding 2-level generative model consisted of two states
at level 2 (left or right side) and four states at level 1: vertical left, horizontal left, vertical
right, horizontal right. Each of these states was encoded by a neuron at the respective level.
The feedforward connections at level 1 were chosen to be vertically or horizontally oriented
Gabor filters localized to the left or right side of the image. Since the experiment used static
images, the recurrent connections at each level implemented transition probabilities close
to 1 for the same state and small random values for other states. The transition probabilities
P (θt

1,k|θ
t
2,i, θ

t−1
1,j ) were chosen such that for θt

2 = left side, the transition probabilities for
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Figure 2: Responses from the Single-Level Motion Detection Network. (A) Feedforward weights
for neurons 1, . . . , 15 (rightward motion selective neurons). Feedforward weights for neurons
16, . . . , 30 (leftward motion selective) are identical. (B) Recurrent weights encoding the transition
probabilities P (θt+1

i |θt
j) for i, j = 1, . . . , 30. Probability values are proportional to pixel brightness.

(C) Spiking responses of three of the first 15 neurons in the recurrent network (neurons 8, 10, and
12). As is evident, these neurons have become selective for rightward motion as a consequence of
the recurrent connections specified in (B). (D) Posterior probabilities over time of motion direction
(at a given location) encoded by the three neurons for rightward and leftward motion.

states θt
1 coding for the right side were set to values close to zero (and vice versa, for θt

2 =
right side). As shown in Figure 3, the response of a neuron at level 1 that, for example,
prefers a vertical edge on the right mimics the response of a V4 neuron with and without
attention (see figure caption for more details). The initial setting of the priors at level 2 is
the crucial determinant of attentional modulation in level 1 neurons, suggesting that feed-
back from higher cortical areas may convey task-specific priors that are integrated into V4
responses.

5 Discussion and Conclusions
We have shown that recurrent networks of noisy integrate-and-fire neurons can perform
approximate Bayesian inference for single- and multi-level dynamic graphical models. The
model suggests a new interpretation of the spiking probability of a neuron in terms of the
posterior probability of the preferred state encoded by the neuron, given past inputs. We
illustrated the model using two problems: inference of motion direction in a single-level
network and hierarchical inference of object identity at an attended visual location in a two-
level network. In the first case, neurons generated direction-selective spikes encoding the
probability of motion in a particular direction. In the second case, attentional effects similar
to those observed in primate cortical areas V2 and V4 emerged as a result of imposing
appropriate priors at the highest level.

The results obtained thus far are encouraging but several important questions remain. How
does the approach scale to more realistic graphical models? The two-level model explored
in this paper assumed stationary objects, resulting in simplified dynamics for the two levels
in our recurrent network. Experiments are currently underway to test the robustness of the
proposed model when richer classes of dynamics are introduced at the different levels. An-
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Figure 3: Responses from the Two-Level Hierarchical Network. (A) Top panel: Input image
(lasting the first 15 time steps) containing a vertical bar (“Reference”) on the right side. Each in-
put was convolved with a retinal spatiotemporal filter. Middle: Three sample spike trains from the
1st level neuron whose preferred stimulus was a vertical bar on the right side. Bottom: Posterior
probability of a vertical bar (= spiking probability or instantaneous firing rate of the neuron) plotted
over time. (B) Top panel: An input containing two stimuli (“Pair”). Below: Sample spike trains and
posterior probability for the same neuron as in (A). (C) When “attention” is focused on the right side
(depicted by the white oval) by initializing the prior probability encoded by the 2nd level right-coding
neuron at a higher value than the left-coding neuron, the firing rate for the 1st level neuron in (A) in-
creases to a level comparable to that in (A). (D) Responses from a neuron in primate area V4 without
attention (top panel, Ref Att Away and Pair Att Away; compare with (A) and (B)) and with attention
(bottom panel, Pair Att Ref; compare with (C)) (from [17]). Similar responses are seen in V2 [17].



other open question is how active dendritic processes could support probabilistic integration
of messages from local, lower-level, and higher-level neurons, as suggested in Section 3.
We intend to investigate this question using biophysical (compartmental) models of cortical
neurons. Finally, how can the feedforward, feedback, and recurrent synaptic weights in the
networks be learned directly from input data? We hope to investigate this question using
biologically-plausible approximations to the expectation-maximization (EM) algorithm.
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