
Experts in a Markov Decision Process

Eyal Even-Dar
Computer Science

Tel-Aviv University
evend@post.tau.ac.il

Sham M. Kakade
Computer and Information Science

University of Pennsylvania
skakade@linc.cis.upenn.edu

Yishay Mansour ∗

Computer Science
Tel-Aviv University

mansour@post.tau.ac.il

Abstract

We consider an MDP setting in which the reward function is allowed to
change during each time step of play (possibly in an adversarial manner),
yet the dynamics remain fixed. Similar to the experts setting, we address
the question of how well can an agent do when compared to the reward
achieved under the best stationary policy over time. We provideefficient
algorithms, which have regret bounds withno dependenceon the size of
state space. Instead, these bounds depend only on a certain horizon time
of the process and logarithmically on the number of actions. We also
show that in the case that the dynamics change over time, the problem
becomes computationally hard.

1 Introduction

There is an inherent tension between the objectives in an expert setting and those in a re-
inforcement learning setting. In the experts problem, during every round a learner chooses
one ofn decision making experts and incurs the loss of the chosen expert. The setting is
typically an adversarial one, where Nature provides the examples to a learner. The stan-
dard objective here is a myopic, backwards looking one — in retrospect, we desire that our
performance is not much worse than had we chosen anysingleexpert on the sequence of
examples provided by Nature. In contrast, a reinforcement learning setting typically makes
the much stronger assumption of a fixed environment, typically a Markov decision pro-
cess (MDP), and the forward looking objective is to maximize some measure of the future
reward with respect to this fixed environment.

The motivation of this work is to understand how toefficientlyincorporate the benefits of
existing experts algorithms into a more adversarial reinforcement learning setting, where
certain aspects of the environment could change over time. A naive way to implement an
experts algorithm is to simply associate an expert with each fixed policy. The running time
of such algorithms is polynomial in the number of experts and the regret (the difference
from the optimal reward) is logarithmic in the number of experts. For our setting the num-
ber of policies is huge, namely#actions#states, which renders the naive experts approach
computationally infeasible.

Furthermore, straightforward applications of standard regret algorithms produce regret
bounds which are logarithmic in the number of policies, so they have linear dependence

∗This work was supported in part by the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778, by a grant from the Israel Science Foundation
and an IBM faculty award. This publication only reflects the authors’ views.

on the number of states. We might hope for a more effective regret bound which hasno
dependenceon the size of state space (which is typically large).

The setting we consider is one in which the dynamics of the environment are known to
the learner, but the reward function can change over time. We assume that after each time
step the learner has complete knowledge of the previous reward functions (over the entire
environment), but does not know the future reward functions.

As a motivating example one can consider taking a long road-trip over some period of
time T . The dynamics, namely the roads, are fixed, but the road conditions may change
frequently. By listening to the radio, one can get (effectively) instant updates of the road
and traffic conditions. Here, the task is to minimize the cost during the period of timeT .
Note that at each time step we select one road segment, suffer a certain delay, and need to
plan ahead with respect to our current position.

This example is similar to an adversarial shortest path problem considered in Kalai and
Vempala [2003]. In fact Kalai and Vempala [2003], address the computational difficulty of
handling a large number of experts under certain linear assumptions on the reward func-
tions. However, their algorithm is not directly applicable to our setting, due to the fact that
in our setting, decisions must be made with respect to thecurrent state of the agent (and
the reward could be changing frequently), while in their setting the decisions are only made
with respect to a single state.

McMahan et al. [2003] also considered a similar setting — they also assume that the reward
function is chosen by an adversary and that the dynamics are fixed. However, they assume
that the cost functions come from a finite set (but are not observable) and the goal is to find
a min-max solution for the related stochastic game.

In this work, we provideefficientways to incorporate existing best experts algorithms into
the MDP setting. Furthermore, our loss bounds (compared to the best constant policy) have
no dependenceon the number of states and depend only on on a certain horizon time of
the environment andlog(#actions). There are two sensible extensions of our setting. The
first is where we allow Nature to change the dynamics of the environment over time. Here,
we show that it becomes NP-Hard to develop a low regret algorithm even for oblivious
adversary. The second extension is to consider one in which the agent only observes the
rewards for the states it actually visits (a generalization of the multi-arm bandits problem).
We leave this interesting direction for future work.

2 The Setting

We consider an MDP with state spaceS; initial state distributiond1 overS; action space
A; state transition probabilities{Psa(·)} (here,Psa is the next-state distribution on tak-
ing actiona in states); and a sequence of reward functionsr1, r2, . . . rT , wherert is the
(bounded) reward function at time stept mappingS × A into [0, 1].

The goal is to maximize the sum of undiscounted rewards over aT step horizon. We assume
the agent has complete knowledge of the transition modelP , but at timet, the agent only
knows the past reward functionsr1, r2, . . .rt−1. Hence, an algorithmA is a mapping from
S and the previous reward functionsr1, . . . rt−1 to a probability distribution over actions,
soA(a|s, r1, . . . rt−1) is the probability of taking actiona at timet.

We define the return of an algorithmA as:

Vr1,r2,...rT
(A) =

1

T
E

[

T
∑

t=1

rt(st, at)
∣

∣

∣
d1,A

]

whereat ∼ A(a|st, r1, . . . rt−1) andst is the random variable which represents the state

at timet, starting from initial states1 ∼ d1 and following actionsa1, a2, . . . at−1. Note
that we keep track of the expectation and not of a specific trajectory (and our algorithm
specifies a distribution over actions ateverystate and ateverytime stept).

Ideally, we would like to find anA which achieves a large rewardVr1,...rT
(A) regardlessof

how the adversary chooses the reward functions. In general, this of course is not possible,
and, as in the standard experts setting, we desire that our algorithm competes favorably
against the best fixed stationary policyπ(a|s) in hindsight.

3 An MDP Experts Algorithm

3.1 Preliminaries

Before we provide our algorithm a few definitions are in order. For every stationary pol-
icy π(a|s), we definePπ to be the transition matrix induced byπ, where the component
[Pπ]s,s′ is the transition probability froms to s′ underπ. Also, definedπ,t to be the state
distribution at timet when followingπ, ie

dπ,t = d1(P
π)t

where we are treatingd1 as a row vector here.

Assumption 1 (Mixing) We assume the transition model over states, as determined byπ,
has a well defined stationary distribution, which we calldπ. More formally, for every
initial states, dπ,t converges todπ ast tends to infinity anddπPπ = dπ. Furthermore, this
implies there exists someτ such that forall policiesπ, and distributionsd andd′,

‖dPπ − d′Pπ‖1 ≤ e−1/τ‖d − d′‖1

where‖x‖1 denotes thel1 norm of a vectorx. We refer toτ as themixing timeand assume
that τ > 1.

The parameterτ provides a bound on the planning horizon timescale, since it implies that
everypolicy achieves close to its average reward inO(τ) steps1. This parameter also
governs how long it effectively takes to switch from one policy to another (after timeO(τ)
steps there is little information in the state distribution about the previous policy).

This assumption allows us to define the average reward of policyπ in an MDP with reward
functionr as:

ηr(π) = Es∼dπ,a∼π(a|s)[r(s, a)]

and the value,Qπ,r(s, a), is defined as

Qπ,r(s, a) ≡ E

[

∞
∑

t=1

(r(st, at) − ηr(π))
∣

∣

∣
s1 = s, a1 = a, π

]

where andst andat are the state and actions at timet, after starting from states1 = s
then deviating with an immediate action ofa1 = a and followingπ onwards. We slightly
abuse notation by writingQπ,r(s, π

′) = Ea∼π′(a|s)[Qπ,r(s, a)]. These values satisfy the
well known recurrence equation:

Qπ,r(s, a) = r(s, a) − ηr(π) + Es′∼Psa
[Qπ(s′, π)] (1)

whereQπ(s′, π) is the next state value (without deviation).

1If this timescale is unreasonably large for some specific MDP, then one could artificially impose
some horizon time and attempt to compete with those policies which mix in this horizon time, as
done Kearns and Singh [1998].

If π∗ is an optimal policy (with respect toηr), then, as usual, we defineQ∗
r(s, a) to be the

value of the optimal policy,ie Q∗
r(s, a) = Qπ∗,r(s, a).

We now provide two useful lemmas. It is straightforward to see that the previous assump-
tion implies a rate of convergence to the stationary distribution that isO(τ), for all policies.
The following lemma states this more precisely.

Lemma 2 For all policiesπ,

‖dπ,t − dπ‖1 ≤ 2e−t/τ .

Proof. Sinceπ is stationary, we havedπPπ = dπ, and so

‖dπ,t − dπ‖1 = ‖dπ,t−1P
π − dπPπ‖1 ≤ ‖dπ,t−1 − dπ‖1e

−1/τ

which implies‖dπ,t − dπ‖1 ≤ ‖d1 − dπ‖1e
−t/τ . The claim now follows since, for all

distributionsd andd′, ‖d − d′‖1 ≤ 2. �

The following derives a bound on theQ values as a function of the mixing time.

Lemma 3 For all reward functionsr, Qπ,r(s, a) ≤ 3τ .

Proof. First, let us boundQπ,r(s, π), whereπ is used on the first step. For allt, including
t = 1, let dπ,s,t be the state distribution at timet starting from states and followingπ.
Hence, we have

Qπ,r(s, π) =

∞
∑

t=1

(

Es′∼dπ,s,t,a∼π[r(s′, a)] − ηr(π))
)

≤
∞
∑

t=1

(

Es′∼dπ,a∼π[r(s′, a)] − ηr(π) + 2e−t/τ
)

=
∞
∑

t=1

2e−t/τ ≤
∫ ∞

0

2e−t/τ = 2τ

Using the recurrence relation for the values, we knowQπ,r(s, a) could be at most1 more
than the above. The result follows since1 + 2τ ≤ 3τ �

3.2 The Algorithm

Now we provide our main result showing how to use any generic experts algorithm in our
setting. We associate each state with an experts algorithm, and the expert for each state
is responsible for choosing the actions at that state. The immediate question is what loss
function should we feed to each expert. It turns outQπt,rt

is appropriate. We now assume
that our experts algorithm achieves a performance comparable to the best constant action.

Assumption 4 (Black Box Experts) We assume access to an optimized best expert algo-
rithm which guarantees that for any sequence of loss functionsc1, c2, . . . cT over actions
A, the algorithm selects a distributionqt over A (using only the previous loss functions
c1, c2, . . . ct−1) such that

T
∑

t=1

Ea∼qt
[ct(a)] ≤

T
∑

t=1

ct(a) + M
√

T log |A|,

where‖ct(a)‖ ≤ M . Furthermore, we also assume that decision distributions do not
change quickly:

‖qt − qt+1‖1 ≤
√

log |A|
t

These assumptions are satisfied by the multiplicative weights algorithms. For instance, the
algorithm in Freund and Schapire [1999] is such that the for each decisiona, | log qt(a) −
log qt+1(a)| changes byO(

√

log |A|
t), which implies the weakerl1 condition above.

In our setting, we have an experts algorithm associated witheverystates, which is fed the
loss functionQπt,rt

(s, ·) at time t. The above assumption then guarantees that at every
states for every actiona we have that

T
∑

t=1

Qπt,rt
(s, πt) ≤

T
∑

t=1

Qπt,rt
(s, a) + 3τ

√

T log |A|

since the loss functionQπt,rt
is bounded by3τ , and that

|πt(·|s) − πt+1(·|s)|1 ≤
√

log |A|
t

As we shall see, it is important that this ’slow change’ condition be satisfied. Intuitively,
our experts algorithms will be using a similar policy for significantly long periods of time.

Also note that since the experts algorithms are associated with each state and each of the
N experts chooses decisions out ofA actions, the algorithm is efficient (polynomial inN
andA, assuming that that the black box uses a reasonable experts algorithm).

We now state our main theorem.

Theorem 5 Let A be the MDP experts algorithm. Then for all reward functions
r1, r2, . . . rT and for all stationary policiesπ,

Vr1,r2,...rT
(A) ≥ Vr1,r2,...rT

(π) − 8τ2

√

log |A|
T

− 3τ

√

log |A|
T

− 4τ

T

As expected, the regret goes to0 at the rateO(1/
√

T), as is the case with experts algo-
rithms. Importantly, note that the bound doesnot dependon the size of the state space.

3.3 The Analysis

The analysis is naturally divided into two parts. First, we analyze the performance of the
algorithm in an idealized setting, where the algorithm instantaneously obtains the average
reward of its current policy at each step. Then we take into account the slow change of the
policies to show that the actual performance is similar to the instantaneous performance.

An Idealized Setting: Let us examine the case in which at each timet, when the algo-
rithm usesπt, it immediately obtains rewardηrt

(πt). The following theorem compares the
performance of our algorithms to that of a fixed constant policy in this setting.

Theorem 6 For all sequencesr1, r2, . . . rT , the MDP experts algorithm have the following
performance bound. For allπ,

T
∑

t=1

ηrt
(πt) ≥

T
∑

t=1

ηrt
(π) − 3τ

√

T log |A|

whereπ1, π2, . . . πT is the sequence of policies generated byA in response tor1, r2, . . . rT .

Next we provide a technical lemma, which is a variant of a result in Kakade [2003]

Lemma 7 For all policiesπ andπ′,

ηr(π
′) − ηr(π) = Es∼dπ′ [Qπ,r(s, π

′) − Qπ,r(s, π)]

Proof. Note that by definition of stationarity, if the state distribution is atdπ′ , then the
next state distribution is alsodπ′ if π′ is followed. More formally, ifs ∼ dπ′ , a ∼ π′(a|s),
ands′ ∼ Psa, thens′ ∼ dπ′ . Using this and equation 1, we have:

Es∼dπ′ [Qπ,r(s, π
′)] = Es∼dπ′ ,a∼π′ [Qπ,r(s, a)]

= Es∼dπ′ ,a∼π′ [r(s, a) − ηr(π) + Es′∼Psa
[Qπ(s′, π)]

= Es∼dπ′ ,a∼π′ [r(s, a) − ηr(π)] + Es∼dπ′ [Qπ(s, π)]

= ηr(π
′) − ηr(π) + Es∼dπ′ [Qπ(s, π)]

Rearranging terms leads to the result. �

The lemma shows why our choice to feed each experts algorithmQπt,rt
was appropriate.

Now we complete the proof of the above theorem.

Proof. Using the assumed regret in assumption 4,
T
∑

t=1

ηrt
(π) −

T
∑

t=1

ηrt
(πt) =

T
∑

t=1

Es∼dπ
[Qπt,rt

(s, π) − Qπt,rt
(s, πt)]

= Es∼dπ
[

T
∑

t=1

Qπt,rt
(s, π) − Qπt,rt

(s, πt)]

≤ Es∼dπ
[3τ
√

T log A]

= 3τ
√

T log A

where we used the fact thatdπ does not depend on the time in the second step. �

Taking Mixing Into Account: This subsection relates the valuesV to the sums of average
reward used in the idealized setting.

Theorem 8 For all sequencesr1, r2, . . . rT and for allA

|Vr1,r2,...rT
(A) − 1

T

T
∑

t=1

ηrt
(πt)| ≤ 4τ2

√

log |A|
T

+
2τ

T

whereπ1, π2, . . . πT is the sequence of policies generated byA in response tor1, r2, . . . rT .

Since the above holds for allA (including thoseA which are the constant policyπ), then
combining this with Theorem 6 (once withA and once withπ) completes the proof of
Theorem 5. We now prove the above.

The following simple lemma is useful and we omit the proof. It shows how close are the
next state distributions when followingπt rather thanπt+1.

Lemma 9 Letπ andπ′ be such that‖π(·|s)−π′(·|s)‖1 ≤ ǫ. Then for any state distribution
d, we have‖dPπ − dPπ′‖1 ≤ ε.

Analogous to the definition ofdπ,t, we definedA,t

dA,t = Pr[st = s|d1,A]

which is the probability that the state at timet is s given thatA has been followed.

Lemma 10 Let π1, π2, . . . πT be the sequence of policies generated byA in response to
r1, r2, . . . rT . We have

‖dA,t − dπt
‖1 ≤ 2τ2

√

log |A|
t

+ 2e−t/τ

Proof. Let k ≤ t. Using our experts assumption, it is straightforward to see that that the
change in the policy overk steps is|πk(·|s) − πt(·|s)|1 ≤ (t − k)

√

log |A|/t. Using this
with dA,k = dA,k−1P (πk) anddπt

Pπt = dπt
, we have

‖dA,k − dπt
‖1 = ‖dA,k−1P

πk − dπt
‖1

≤ ‖dA,k−1P
πt − dπt

‖1 + ‖dA,k−1P
πk − dA,k−1P

πt‖1

≤ ‖dA,k−1P
πt − dπt

Pπt‖1 + 2(t − k)
√

log |A|/t

≤ e−1/τ‖dA,k−1 − dπt
‖1 + 2(t − k)

√

log |A|/t

where we have used the last lemma in the third step and our contraction assumption 1 in
the second to last step. Recursing on the above equation leads to:

‖dA,t − dπt
‖ ≤ 2

√

log |A|/t

2
∑

k=t

(t − k)e−(t−k)/τ + e−t/τ‖d1 − dπt
‖

≤ 2
√

log |A|/t

∞
∑

k=1

ke−k/τ + 2e−t/τ

The sum is bounded by an integral from0 to∞, which evaluates toτ2. �

We are now ready to complete the proof of Theorem 8.

Proof. By definition ofV ,

Vr1,r2,...rT
(A) =

1

T

T
∑

t=1

Es∼dA,t,a∼πt
[rt(s, a)]

≤ 1

T

T
∑

t=1

Es∼dπt
,a∼πt

[rt(s, a)] +
1

T

T
∑

t=1

‖dA,t − dπt
‖1

≤ 1

T

T
∑

t=1

ηrt
(πt) +

1

T

T
∑

t=1

(

2τ2

√

log |A|
t

+ 2e−t/τ

)

≤ 1

T

T
∑

t=1

ηrt
(πt) + 4τ2

√

log |A|
T

+
2τ

T

where we have bounded the sums by integration in the second to last step. A symmetric
argument leads to the result. �

4 A More Adversarial Setting

In this section we explore a different setting, thechanging dynamics model. Here, in each
timestept, an oblivious adversary is allowed to choose both the reward functionrt and
the transition modelPt — the model that determines the transitions to be used at timestep
t. After each timestep, the agent receives complete knowledge of bothrt andPt. Fur-
thermore, we assume thatPt is deterministic, so we do not concern ourselves with mixing
issues. In this setting, we have the following hardness result. We letR∗

t (M) be the optimal
average reward obtained by a stationary policy for times[1, t].

Theorem 11 In the changing dynamics model, if there exists a polynomial time online
algorithm (polynomial in the problem parameters) such that, for any MDP, has an expected
average reward larger than(0.875 + ε)R∗

t (M), for someε > 0 andt, thenP = NP .

The following lemma is useful in the proof and uses the fact that it is hard to approximate
MAX3SAT within any factor better than0.875 (Hastad [2001]).

Lemma 12 Computing a stationary policy in the changing dynamics model with average
reward larger than(0.875 + ε)R∗(M), for someε > 0, is NP-Hard.

Proof: We prove it by reduction from 3-SAT. Suppose that the 3-SAT formula,φ hasm
clauses,C1, . . . , Cm, andn literals, x1, . . . , xn then we reduce it to MDP withn + 1
states,s1, . . . sn, sn+1, two actions in each state,0, 1 and fixed dynamic for3m steps which
will be described later. We prove that a policy with average rewardp/3 translates to an
assignment that satisfiesp fraction ofφ and vice versa. Next we describe the dynamics.
Suppose thatC1 is (x1∨¬x2∨x7) andC2 is (x4∨¬x1∨x7). The initial state iss1 and the
reward for action0 is 0 and the agent moves to states2, for action1 the reward is1 and it
moves to statesn+1. In the second timestep the reward insn+1 is 0 for every action and the
agents stay in it; in states2 if the agent performs action0 then it obtains reward1 and move
to statesn+1 otherwise it obtains reward0 and moves to states7. In the next timestep the
reward insn+1 is 0 for every action and the agents moves tox4, the reward ins7 is 1 for
action1 and zero for action0 and moves tos4 for both actions. The rest of the construction
is done identically. Note that time interval[3(ℓ− 1) + 1, 3ℓ] corresponds toCℓ and that the
reward obtained in this interval is at most1. We note thatφ has an assignmenty1, . . . , yn

whereyi = {0, 1} that satisfiesp fraction of it, if and only ifπ which takes actionyi in si

has average rewardp/3. We prove it by looking on each interval separately and noting that
if a reward1 is obtained then there is an actiona that we take in one of the states which has
reward1 but this action corresponds to a satisfying assignment for this clause. �

We are now ready to prove Theorem 11.

Proof: In this proof we make few changes from the construction given in Lemma 12. We
allow the same clause to repeat few times, and its dynamics are described inn steps and
not in 3 steps, where in thek step we move fromsk to sk+1 and obtains0 reward, unless
the action ”satisfies” the chosen clause, if it satisfies then we obtain an immediate reward
1, move tosn+1 and stay there forn − k − 1 steps. Aftern steps the adversary chooses
uniformly at random the next clause. In the analysis we define then steps related to a clause
as an iteration. The strategy defined by the algorithm at thek iteration is the probability
assigned to action0/1 at statesℓ just before arriving tosℓ. Note that the strategy at each
iteration is actually a stationary policy forM . Thus the strategy in each iteration defines
an assignment for the formula. We also note that before an iteration the expected reward
of the optimal stationary policy in the iteration isk/(nm), wherek is the maximal number
of satisfiable clauses and there arem clauses, and we haveE[R∗(M)] = k/(nm). If we
choose at random an iteration, then the strategy defined in that iteration has an expected
reward which is larger than(0.875 + ε)R∗(M), which implies that we can satisfy more
than0.875 fraction of satisfiable clauses, but this is impossible unlessP = NP . �

References
Y. Freund and R. Schapire. Adaptive game playing using multiplicative weights.Games and Eco-

nomic Behavior, 29:79–103, 1999.

J. Hastad. Some optimal inapproximability results.J. ACM, 48(4):798–859, 2001.

S. Kakade.On the Sample Complexity of Reinforcement Learning. PhD thesis, University College
London, 2003.

A. Kalai and S. Vempala. Efficient algorithms for on-line optimization.Proceedings of COLT, 2003.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time.Proceedings of
ICML, 1998.

H. McMahan, G. Gordon, and A. Blum. Planning in the presence of cost functions controlled by an
adversary. InIn the 20th ICML, 2003.

