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Abstract

In contrast to the equivalence of linear blind source separation and linear
independent component analysis it is not possible to recover the origi-
nal source signal from some unknown nonlinear transformations of the
sources using only the independence assumption. Integrating the ob-
jectives of statistical independence and temporal slowness removes this
indeterminacy leading to a new method for nonlinear blind source sepa-
ration. The principle of temporal slowness is adopted from slow feature
analysis, an unsupervised method to extract slowly varying features from
a given observed vectorial signal. The performance of the algorithm is
demonstrated on nonlinearly mixed speech data.

1 Introduction

Unlike in the linear case the nonlinear Blind Source Separation (BSS) problem can not be
solved solely based on the principle of statistical independence [1, 2]. Performing non-
linear BSS with Independent Component Analysis (ICA) requires additional information
about the underlying sources or to regularize the nonlinearities. Since source signal com-
ponents are usually more slowly varying than any nonlinear mixture of them we consider
to require the estimated sources to be as slowly varying as possible. This can be achieved
by incorporating ideas from Slow Feature Analysis (SFA) [3] into ICA.

After a short introduction to linear BSS, nonlinear BSS, and SFA we will show a way how
to combine SFA and ICA to obtain an algorithm that solves the nonlinear BSS problem.



2 Linear Blind Source Separation

Let x(t) = [x1 (t) , . . . , xN (t)]
T be a linear mixture of a source signal s(t) =

[s1 (t) , . . . , sN (t)]
T and defined by

x (t) = As (t) , (1)

with an invertible N × N mixing matrix A. Finding a mapping

u (t) = QWx (t) (2)

such that the components of u are mutually statistically independent is called Indepen-
dent Component Analysis (ICA). The mapping is often divided into a whitening mapping
W, resulting in uncorrelated signal components yi with unit variance and a successive or-
thogonal transformation Q, because one can show [4] that after whitening an orthogonal
transformation is sufficient to obtain independence. It is well known that ICA solves the
linear BSS problem [4]. There exists a variety of algorithms performing ICA and therefore
BSS (see e.g. [5, 6, 7]). Here we focus on a method using only second-order statistics
introduced by Molgedey and Schuster [8]. The method consists of optimizing an objective
function subject to minimization, which can be written as

ΨICA (Q) =
N

∑

α,β=1

α6=β

(

C
(u)
αβ (τ)

)2

=
N

∑

α,β=1

α6=β





N
∑

γ,δ=1

QαγQβδC
(y)
γδ (τ)





2

, (3)

operating on the already whitened signal y. C
(y)
γδ (τ) is an entry of a symmetrized time

delayed covariance matrix defined by

C(y) (τ) =
〈

y (t)y (t + τ)
T

+ y (t + τ)y (t)
T
〉

, (4)

and C(u) (τ) is defined correspondingly. Qαβ denotes an entry of Q. Minimization of
ΨICA can be understood intuitively as finding an orthogonal matrix Q that diagonalizes the
covariance matrix with time delay τ . Since, because of the whitening, the instantaneous
covariance matrix is already diagonal this results in signal components that are decorrelated
instantaneously and at a given time delay τ . This can be sufficient to achieve statistical
independence [9].

2.1 Nonlinear BSS and ICA

An obvious extension to the linear mixing model (1) has the form

x (t) = F (s (t)) , (5)

with a function F (· ) R
N → R

M that maps N -dimensional source vectors s onto M -
dimensional signal vectors x. The components xi of the observable are a nonlinear mixture
of the sources and like in the linear case source signal components si are assumed to be
mutually statistically independent. Extracting the source signal is in general only possible
if F (· ) is an invertible function, which we will assume from now on.

The equivalence of BSS and ICA in the linear case does in general not hold for a nonlinear
function F (· ) [1, 2]. To solve the nonlinear BSS problem additional constraints on the
mixture or the estimated signals are needed to bridge the gap between ICA and BSS. Here
we propose a new way to achieve this by adding a slowness objective to the independence
objective of pure ICA. Assume for example a sinusoidal signal component xi = sin (2πt)
and a second component that is the square of the first xj = x2

i = 0.5 (1 − cos (4πt))
is given. The second component is more quickly varying due to the frequency doubling



induced by the squaring. Typically nonlinear mixtures of signal components are more
quickly varying than the original components. To extract the right source components one
should therefore prefer the slowly varying ones. The concept of slowness is used in our
approach to nonlinear BSS by combining an ICA part that provides the independence of
the estimated source signal components with a part that prefers slowly varying signals over
more quickly varying ones. In the next section we will give a short introduction to Slow
Feature Analysis (SFA) building the basis of the second part of our method.

3 Slow Feature Analysis

Assume a vectorial input signal x(t) = [x1(t), . . . , xM (t)]
T is given. The objective of SFA

is to find an in general nonlinear input-output function u (t) = g (x (t)) with g (x (t)) =

[g1 (x (t)) , . . . , gR (x (t))]
T such that the ui (t) are varying as slowly as possible. This

can be achieved by successively minimizing the objective function

∆(ui) :=
〈

u̇2
i

〉

(6)

for each ui under the constraints

〈ui〉 = 0 (zero mean), (7)
〈

u2
i

〉

= 1 (unit variance), (8)

〈uiuj〉 = 0 ∀ j < i (decorrelation and order). (9)

Constraints (7) and (8) ensure that the solution will not be the trivial solution ui = const.
Constraint (9) provides uncorrelated output signal components and thus guarantees that
different components carry different information. Intuitively we are searching for signal
components ui that have on average a small slope.

Interestingly Slow Feature Analysis (SFA) can be reformulated with an objective function
similar to second-order ICA, subject to maximization [10],

ΨSFA (Q) =

M
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α=1

(

C(u)
αα (τ)

)2

=

M
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α=1
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2

. (10)

To understand (10) intuitively we notice that slowly varying signal components are easier
to predict, and should therefore have strong auto correlations in time. Thus, maximizing
the time delayed variances produces slowly varying signal components.

4 Independent Slow Feature Analysis

If we combine ICA and SFA we obtain a method we refer to as Independent Slow Feature
Analysis (ISFA) that recovers independent components out of a nonlinear mixture using a
combination of SFA and second-order ICA. As already explained, second-order ICA tends
to make the output components independent and SFA tends to make them slow. Since
we are dealing with a nonlinear mixture we first compute a nonlinearly expanded signal
z = h (x) with h (· ) R

M → R
L being typically monomials up to a given degree, e.g. an

expansion with monomials up to second degree can be written as

h (x (t)) = [x1, . . . , xN , x1x1, x1x2, . . . , xMxM ]
T
− hT

0 (11)

when given an M -dimensional signal x. The constant vector hT
0 is used to make the ex-

panded signal mean free. In a second step z is whitened to obtain y = Wz. Thirdly we
apply linear ICA combined with linear SFA on y in order to find the estimated source signal



u. Because of the whitening we know that ISFA, like ICA and SFA, is solved by finding
an orthogonal L × L matrix Q. We write the estimated source signal u as

v =

(

u
ũ

)

= Qy = QWz = QWh (x) , (12)

where we introduced ũ, since R, the dimension of the estimated source signal u, is usually
much smaller than L, the dimension of the expanded signal. While the ui are statistically
independent and slowly varying the components ũi are more quickly varying and may be
statistically dependent on each other as well as on the selected components.

To summarize, we have an M dimensional input x an L dimensional nonlinearly expanded
and whitened y and an R dimensional estimated source signal u. ISFA searches an R
dimensional subspace such that the ui are independent and slowly varying. This is achieved
at the expense of all ũi.

4.1 Objective function

To recover R source signal components ui i = 1, . . . , R out of an L-dimensional expanded
and whitened signal y the objective reads

ΨISFA (u1, . . . , uR; τ) = bICA

R
∑

α,β=1,
α6=β

(

C
(u)
αβ (τ)

)2

− bSFA

R
∑

α=1

(

C(u)
αα (τ)

)2

, (13)

where we simply combine the ICA objective (3) and SFA objective (10) weighted by the
factors bICA and bSFA, respectively. Note that the ICA objective is usually applied to the
linear case to unmix the linear whitened mixture y whereas here it is used on the nonlinearly
expanded whitened signal y = Wz. ISFA tries to minimize ΨISFA which is the reason why
the SFA part has a negative sign.

4.2 Optimization Procedure

From (12) we know that C(u) (τ) in (13) depends on the orthogonal matrix Q. There are
several ways to find the orthogonal matrix that minimizes the objective function. Here we
apply successive Givens rotations to obtain Q. A Givens rotation Qµν is a rotation around
the origin within the plane of two selected components µ and ν and has the matrix form

Qµν
αβ :=











cos(φ) for (α, β) ∈ {(µ, µ) , (ν, ν)}
− sin(φ) for (α, β) ∈ {(µ, ν)}

sin(φ) for (α, β) ∈ {(ν, µ)}
δαβ otherwise

(14)

with Kronecker symbol δαβ and rotation angle φ. Any orthogonal L × L matrix such

as Q can be written as a product of L(L−1)
2 (or more) Givens rotation matrices Qµν (for

the rotation part) and a diagonal matrix with elements ±1 (for the reflection part). Since
reflections do not matter in our case we only consider the Givens rotations as is often used
in second-order ICA algorithms (see e.g. [11]).

We can therefore write the objective as a function of a Givens rotation Qµν as

ΨISFA (Qµν) = bICA

R
∑

α,β=1,
α6=β


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L
∑

γ,δ=1

Qµν
αγQµν
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2

−
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R
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L
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αβQµν

αγC
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2

. (15)



Assume we want to minimize ΨISFA for a given R, where R denotes the number of signal
components we want to extract. Applying a Givens rotation Qµν we have to distinguish
three cases.

• Case 1: Both axes uµ and uν lie inside the subspace spanned by the first R axes
(µ, ν ≤ R). The sum over all squared cross correlations of all signal components
that lie outside the subspace is constant as well as those of all signal components
inside the subspace. There is no interaction between inside and outside, in fact the
objective function is exactly the objective for an ICA algorithm based on second-
order statistics e.g. TDSEP or SOBI [12, 13]. In [10] it has been shown that this
is equivalent to SFA in the case of a single time delay.

• Case 2: Only one axis, w.l.o.g. uµ, lies inside the subspace, the other, uν , outside
(µ ≤ R < ν). Since one axis of the rotation plane lies outside the subspace, uµ in
the objective function can be optimized at the expense of ũν outside the subspace.
A rotation of π/2, for instance, would simply exchange components uµ and uν .
This gives the possibility to find the slowest and most independent components in
the whole space spanned by all ui and ũj (i = 1, . . . , R, j = R + 1, . . . , L) in
contrast to Case 1 where the minimum is searched within the subspace spanned
by the R components in the objective function.

• Case 3: Both axes lie outside the subspace (R < µ, ν): A Givens rotation with
the two rotation axes outside the relevant subspace does not affect the objective
function and can therefore be disregarded.

It can be shown that like in [14] the objective function (15) as a function of φ can always
be written in the form

Ψµν
ISFA (φ) = A0 + A2 cos (2φ + φ2) + A4 cos (4φ + φ4) , (16)

where the second term on the right hand side vanishes for Case 1. There exists a single
minimum (if w.l.o.g. φ ∈

[

−π
2 , π

2

]

) that can easily be calculated (see e.g.[14]). The
derivation of (16) involves various trigonometric identities and, because of its length, is
documented elsewhere1.

It is important to notice that the rotation planes of the Givens rotations are selected from
the whole L-dimensional space whereas the objective function only uses information of
correlations among the first R signal components ui. Successive application of Givens
rotations Qµν leads to the final rotation matrix Q which is in the ideal case such that
QT C(y) (τ)Q = C(v) (τ) has a diagonal R × R submatrix C(u) (τ), but it is not clear if
the final minimum is also the global one. However, in various simulations no local minima
have been found.

4.3 Incremental Extracting of Independent Components

It is possible to find the number of independent source signal components R by succes-
sively increasing the number of components to be extracted. In each step the objective
function (13) is optimized for a fixed R. First a single signal component is extracted
(R = 1) and then an additional one (R = 2) etc. The algorithm is stopped when no addi-
tional signal component can be extracted. As a stopping criterion every suitable measure
of independence can be applied; we used the sum over squared cross-cumulants of fourth
order. In our artificial examples this value is typically small for independent components,
and increases by two orders of magnitudes if the number of components to be extracted is
greater than the number of original source signal components.

1http://itb.biologie.hu-berlin.de/~blaschke



5 Simulation

Here we show a simple example, with two nonlinearly mixed signal components as shown
in Figure 1. The mixture is defined by

x1 (t) = (s1 (t) + 1) sin (πs2 (t)) ,

x2 (t) = (s1 (t) + 1) cos (πs2 (t)) . (17)

We used the ISFA algorithm with different nonlinearities (see Tab. 1). Already a nonlin-
ear expansion with monomials up to degree three was sufficient to give good results in
extracting the original source signal (see Fig. 1). In all cases ISFA did find exactly two
independent signal components. A linear BSS method failed completely to find a good
unmixing matrix.

6 Conclusion

We have shown that connecting the ideas of slow feature analysis and independent com-
ponent analysis into ISFA is a possible way to solve the nonlinear blind source separation
problem. SFA enforces the independent components of ICA to be slowly varying which
seems to be a good way to discriminate between the original and nonlinearly distorted
source signal components. A simple simulation showed that ISFA is able to extract the
original source signal out of a nonlinear mixture. Furthermore ISFA can predict the num-
ber of source signal components via an incremental optimization scheme.
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