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Abstract

The correction of bias in magnetic resonance images is an important
problem in medical image processing. Most previous approaches have
used a maximum likelihood method to increase the likelihood of the pix-
elsin a single image by adaptively estimating a correction to the unknown
image bias field. The pixel likelihoods are defined either in terms of a
pre-existing tissue model, or non-parametrically in terms of the image’s
own pixel values. In both cases, the specific location of a pixel in the im-
age is not used to calculate the likelihoods. We suggest a new approach
in which we simultaneously eliminate the bias from a set of images of
the same anatomy, but from different patients. We use the statistics from
the same location across differentimages, rather than within an image, to
eliminate bias fields from all of the images simultaneously. The method
builds a “multi-resolution” non-parametric tissue model conditioned on
image location while eliminating the bias fields associated with the orig-
inal image set. We present experiments on both synthetic and real MR
data sets, and present comparisons with other methods.

1 Introduction

The problem of bias fields in magnetic resonance (MR) images is an important problem
in medical imaging. This problem is illustrated in Figure 1. When a patient is imaged in
the MR scanner, the goal is to obtain an image which is a function solely of the underlying
tissue (left of Figure 1). However, typically the desired anatomical image is corrupted by a
multiplicative bias field (2nd image of Figure 1) that is caused by engineering issues such
as imperfections in the radio frequency coils used to record the MR signal. The result is a
corrupted image (3rd image of Figure 1). (See [1] for background information.) The goal
of MR bias correction is to estimate the uncorrupted image from the corrupted image.

A variety of statistical methods have been proposed to address this problem. Wells et
al. [7] developed a statistical model using a discrete set of tissues, with the brightness
distribution for each tissue type (in a bias-free image) represented by a one-dimensional
Guassian distribution. An expectation-maximization (EM) procedure was then used to

simultaneouly estimate the bias field, the tissue type, and the residual noise. While this
method works well in many cases, it has several drawbacks: (1) Models must be developed
a priori for each type of acquistion (for each different setting of the MR scanner), for each
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Figure 1: On the left is an idealized mid-axial MR image of theran brain with little

or no bias field. The second image is a simulated low-frequency bias field. It has been
exaggerated for ease of viewing. The third image is the result of pixelwise multiplication
of the image by the bias field. The goal of MR bias correction is to recover the low-bias
image on the left from the biased image on the right. On the right is the sine/cosine basis,
used to construct band-limited bias fiels (see text).

new area of the body, and for different patient populations (like infants and adults). (2)
Models must be developed from “bias-free” images, which may be difficult or impossible
to obtain in many cases. (3) The model assumes a fixed number of tissues, which may
be inaccurate. For example, during development of the human brain, there is continuous
variability between gray matter and white matter. In addition, a discrete tissue model does
not handle so-called partial volume effects in which a pixel represents a combination of
several tissue types. This occurs frequently since many pixels occur at tissue boundaries.

Non-parametric approaches have also been suggested, as for example by Viola [10]. In
that work, a non-parametric model of the tissue was developed from a single image. Using
the observation that the entropy of the pixel brightness distribution Bngle images

likely to increase when a bias field is added, Viola's method postulates a bias-correction
field by minimizing the entropy of the resulting pixel brightness distribution. This approach
addresses several of the problems of fixed-tissue parametric models, but has its own draw-
backs: (1) The statistical model may be weak, since it is based on data from only a single
image. (2) There is no mechanism for distinguishing between certain low-frequency image
components and a bias field. That is, the method may mistake signal for noise in certain
cases when removal of the true signal reduces the entropy of the brightness distriibution.
We shall show that this is a problem in real medical images.

The method we present overcomes or improves upon problems associated with both of
these methods and their many variations (see, e.g., [1] for recent techniques). It models tis-
sue brightness non-parametrically, but uses data from multiple images to provide improved
distribution estimates and alleviate the need for bias-free images for making a model. It

also conditions on spatial location, taking advantage of a rich information source ignored

in other methods. Experimental results demonstrate the effectiveness of our method.

2 Thelmage Model and Problem Formulation

We assume we are given a $edf observed imagek with 1 <i < N, as shown on the

left side of Figure 2. Each of these images is assumed to be the product of some bias-free
imageL; and a smooth bias field; € B. We shall refer to the bias-free imageslaent
imageg(also calledntrinsic imagedy some authors). The set of all latent images shall be
denoted. and the set of unknown bias fiel8s Then each observed image can be written

as the produck(x,y) =Li(x,y)* Bi(x,y), where(x,y) gives the pixel coordinates of each
point, with P pixels per image.



Consider again Figure 2. pixel-stackthrough each image set is shown as the set of pixels
corresponding to a particular location in each image (not necessarily the same tissue type).
Our method relies on the principle that the pixel-stack values will have lower entropy when
the bias fields have been removed. Figure 3 shows the simulated effect, on the distribution
of values in a pixel-stack, of adding different bias fields to each image.

The latent image generation model assumes that each pixel is drawn from a fixed distribu-
tion pyy(-) which gives the probability of each gray value at the the location) in the

image. Furthermore, we assume that all pixels in the latent image are independent, given
the distributions from which they are drawn. It is also assumed that the bias fields for each
image are chosen independently from some fixed distribution over bias fields. Unlike most
models for this problem which rely on statistical regularities within an image, we take a
completely orthogonal approach by assuming that pixel values are independent given their
image locations, but that pixel-stacks in general have low entropy when bias fields are
removed.

We formulate the problem as a maximum a posteriori (MAP) problem, searching for the
most probable bias fields given the set of observed images. Le#tirepresent the 25-
dimensional product space of smooth bias fields (corresponding to the 25 basis images of
Figure 1), we wish to find
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Here H is the Shannon entropy (<(BgP(x))) and Hyasicek iS @ sample-based entropy
estimatot (a) is just an application of Bayes rule. (b) assumes a uniform prior over the
allowed bias fields. The method can easily be altered to incorporate a non-uniform prior.

IThe entropy estimator used is similar to Vasicek’s estimator [6], given (up to minor details) by
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whereZ'’s represent the values in a pixel-stazk)’s represent those same values in rank ords,
the number of values in the pixel-stack amds a function ofN (like N%5) such tham/N goes to 0
asmandN go to infinity. These entropy estimators are discussed at length elsewhere [3].



Figure 2: On the left are a set of mid-coronal brain images from eight different infants,
showing clear signs of bias fields. pixel-stack, a collection of pixels at the same point

in each image, is represented by the small square near the top of each image. Although
there are probably no more than two or three tissue types represented by the pixel-stack,
the brightness distribution through the pixel-stack has high empirical entropy due to the
presence of different bias fields in each ima@a. the right are a set of images that have
been corrected using our bias field removal algorithm. While the images are still far from
identical, the pixel-stack entropies have been reduced by mapping similar tissues to similar
values in an “unsupervised” fashion, i.e. without knowing or estimating the tissue types.

(c) expresses the fact that the probability of the observed image given a particular bias field
is the same as the probability of the latent image associated with that observed image and
bias field. The approximation (d) replaces the empirical mean of the log probability at each
pixel with the negative entropy of the underlying distribution at that pixel. This entropy is

in turn estimated (e) using the entropy estimator of Vasicek [6] directly from the samples in
the pixel-stack, without ever estimating the distributigrg explicitly. The inequality (d)
becomes an equality & grows large by the law of large numbers, while the consistency

of Vasicek’s entropy estimator [2] implies that (e) also goes to equality with lrg&ee

[2] for a review of entropy estimators.)

3 TheAlgorithm

Using these ideas, it is straightforward to construct algorithms for joint bias field removal.
As mentioned above, we chose to optimize Equation (8) over the set of band-limited bias
fields. To do this, we parameterize the set of bias fields using the sine/cosine basis images
shown on the right of Figure 1:
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We optimize Equation (8) bgimultaneouslypdating the bias field estimates (taking a step
along the numerical gradient) for each image to reduce the overall entropy. That is, at time
stept, the coefficientsr; for each bias field are updated using the latent image estimates
and entropy estimates from time step 1. After all a’s have been updated, a new set of
latent images and pixel-stack entropies are calculated, and another gradient step is taken.
Though it is possible to do a full gradient descent to convergence by optimizing one image
at a time, the optimization landscape tends to have more local minima for the last few
images in the process. The appeal of our joint gradient descent method, on the other hand,
is that the ensemble of images provides a natural smoothing of the optimization landscape
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Figure 3:0n theleft is a simulated distribution from a pixel-stack taken through a particu-
lar set of bias-free mid-axial MR images. The two sharp peaks in the brightness distribution
represent two tissues which are commonly found at that particular pixel loc&ionhe

right is the result of adding an independent bias field to each image. In particular, the
spread, or entropy, of the pixel distribution increases. In this work, we seek to remove bias
fields by seeking to reduce the entropy of the pixel-stack distribution to its original state.

in the joint process. It is in this sense that our method is “multi-resolution”, proceeding
from a smooth optimization in the beginning to a sharper one near the end of the process.

We now summarize the algorithm:

1. Initialize the bias field coefficients for each image to 0, with the exception of
the coefficient for the DC-offset (the constant bias field component), which is
initialized to 1. Initialize the gradient descent step €526 some value.

2. Compute the summed pixelwise entropies for the set of images with initial “neu-
tral” bias field corrections. (See below for method of computation.)

3. Iterate the following loop until no further changes occur in the images.

(&) For each image:

i. Calculate the numerical gradienit HyasicekOf (8) with respect to the bias
field coefficients (g's) for the current image.

ii. Seta = a + 80qHvasicek
(b) Updated (reduce its value according to some schedule).

Upon convergence, it is assumed that the entropy has been reduced as much as possible by
changing the bias fields, unless one or more of the gradient descents is stuck in a local min-
imum. Empirically, the likelihood of sticking in local minima is dramatically reduced by
increasing the number of images)(N the optimization. In our experiments described be-

low with only 21 real infant brains, the algorithm appears to have found a global minimum

of all bias fields, at least to the extent that this can be discerned visually.

Note that for a set aflenticalimages, the pixel-stack entropies are not increased by mul-
tiplying each image by the same bias field (since all images will still be the same). More
generally, when images are approximately equivalent, their pixel-stack entropies are not
signficantly affected by a “common” bias field, i.e. one that occurs in all of the infages.
This means that the algorithm cannot, in general, eliminate all bias fields from a set of im-
ages, but can onlget all of the bias fields to be equivaleite refer to any constant bias
field remaining in all of the images after convergence asehiglual bias field.

2Actually, multiplying each image by a bias field of small magnitude can artificially reduce the
entropy of a pixel-stack, but this is only the result of the brightness values shrinking towards zero.
Such artificial reductions in entropy can be avoided by normalizing a distribution to unit variance
between iterations of computing its entropy, as is done in this work.



Fortunately, there is an effect that tends to minimize theaichpf the residual bias field

in many test cases. In particular, the residual bias field tends to consist of components for
eacha; that approximate the mean of that component across images. For example, if half
of the observed images have a positive value for a particular component’s coefficient, and
half have a negative coefficient for that component, the residual bias field will tend to have

a coefficient near zero for that component. Hence, the algorithm naturally eliminates bias
field effects that are non-systematic, i.e. that are not shared across images.

If the same type of bias field component occurs in a majority of the images, then the algo-
rithm will not remove it, as the component is indistinguishable, under our model, from the
underlying anatomy. In such a case, one could resort to within-image methods to further
reduce the entropy. However, there is a risk that such methods will remove components
that actually represent smooth gradations in the anatomy. This can be seen in the bottom
third of Figure 4, and will be discussed in more detail below.

4 Experiments

To test our algorithm, we ran two sets of experiments, the first on synthetic images for
validation, and the second on real brain images. We obtained synthetic brain images from
the BrainWeb project [8, 9] such as the one shown on the left of Figure 1. These images can
be considered “idealized” MR images in the sense that the brightness values for each tissue
are constant (up to a small amount of manually added isotropic noise). That is, they contain
no bias fields. The initial goal was to ensure that our algorithm could remove synthetically
added bias fields, in which the bias field coefficients were known. UsSimgpies of a

single “latent” image, we added known but different bias fields to each one. For as few as
five images, we could reliably recover the known bias field coefficients, up to a fixed offset
for each image, to within 1% of the power of the original bias coefficients.

More interesting are the results on real images, in which the latent images come from
different patients. We obtained 21 pre-registéradant brain images (top of Figure 4)

from Brigham and Women’s Hospital in Boston, Massachusetts. Large bias fields can be
seen in many of the images. Probably the most striking is a “ramp-like” bias field in the
sixth image of the second row. (The top of the brain is too bright, while the bottom is too
dark.) Because the brain’s white matter is not fully developed in these infant scans, it is
difficult to categorize tissues into a fixed number of classes as is typically done for adult
brain images; hence, these images are not amenable to methods based on specific tissue
models developed for adults (e.g. [7]).

The middle third of Figure 4 shows the results of our algorithm on the infant brain images.
(These results must be viewed in color on a good monitor to fully appreciate the results.)
While a trained technician can see small imperfections in these images, the results are
remarkably good. All major bias artifacts have been removed.

Itis interesting to compare these results to a method that reduces the entropy of each image
individually, without using constraints between images. Using the results of our algorithm
as a starting point, we continued to reduce the entropy of the pidéhén each image

(using a method akin to Viola’s [10]), rather than across images. These results are shown
in the bottom third of Figure 4. Carefully comparing the central brain regions in the middle
section of the figure and the bottom section of the figure, one can see that the butterfly
shaped region in the middle of the brain, which represents developing white matter, has

31t is interesting to note that registration is not strictly necessary for this algorithm to work. The
proposed MAP method works under very broad conditions, the main condition being that the bias
fields do not span the same space as parts of the actual medical images. It is true, however, that as the
latent images become less registered or differ in other ways, that a much larger number of images is
needed to get good estimates of the pixel-stack distributions.



been suppressed in the lower images. This is most likely Isecthie entropy of the pixels

within a particular imagecan be reduced by increasing the bias field “correction” in the
central part of the image. In other words, the algorithm strives to make the image more
uniform by removing the bright part in the middle of the image. However, our algorithm,
which compares pixels across images, does not suppress these real structures, since they
occur across images. Hence coupling across images can produce superior results.

5 Discussion

The idea of minimizing pixelwise entropies to remove nuisance variables from a set of im-
ages is not new. In particular, Miller et al. [4, 5] presented an approach theyocajéaling

in which the sum of pixelwise entropies is minimizeddgparate affine transfornapplied

to each image. Our method can thus be considered an extension of the congealing process
to non-spatial transformations. Combining such approaches to do registration and bias re-
moval simulataneously, or registration and lighting rectification of faces, for example, is an
obvious direction for future work.

This work uses information unused in other methods, i.e. information across images. This
suggests an iterative scheme in which both types of information, both within and across
images, are used. Local models could be based on weighted neighborhoods oppigéls,
cylinders, rather than single pixel-stacks, in sparse data scenarios. For “easy” bias correc-
tion problems, such an approach may be overkill, but for difficult problems in bias correc-
tion, where the bias field is difficult to separate from the underlying tissue, as discussed in
[1], such an approach could produce critical extra leverage.
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Figure 4:NOTE: This image must be viewed in color (preferably on a bright display) for
full effect. Top. Original infant brain imagesviddle. The same images after bias removal
with our algorithm. Note that developing white matter (butterfly-like structures in middle
brain) is well-preservedBottom. Bias removal using a single image based algorithm.
Notice that white matter structures are repressed.



