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Abstract

The Bradley-Terry model for paired comparison has been popular in
many areas. We propose a generalized version in which paired individual
comparisons are extended to paired team comparisons. We introduce a
simple algorithm with convergence proofs to solve the model and obtain
individual skill. A useful application to multi-class probability estimates
using error-correcting codes is demonstrated.

1 Introduction

The Bradley-Terry model [2] for paired comparisons has been broadly applied in many
areas such as statistics, sports, and machine learning. It considers the model

P (individual i beats individualj) =
πi

πi + πj

, (1)

whereπi is the overall skill of theith individual. Givenk individuals andrij as the number
of times thati beatsj, an approximate skillpi can be found by minimizing the negative log
likelihood of the model (1):

min
p

l(p) = −
∑

i<j

(

rij log
pi

pi + pj

+ rji log
pj

pi + pj

)

subject to 0 ≤ pi, i = 1, . . . , k,
k

∑

i=1

pi = 1. (2)

Thus, from paired comparisons, we can obtain individual performance. This model dates
back to [14] and has been extended to more general settings. Some reviews are, for exam-
ple, [5, 6]. Problem (2) can be solved by a simple iterative procedure:

Algorithm 1
1. Start with any initialp0

j > 0, j = 1, . . . , k.
2. Repeat(t = 0, 1, . . .)

a. Lets = (t mod k) + 1. Forj = 1, . . . , k, define

pt,n
j ≡







P

i:i6=s
rsi

P

i:i6=s

rsi+ris

pt
s+pt

i

if j = s,

pt
j if j 6= s.

(3)



b. Normalizept,n to bep
t+1.

until ∂l(pt)/∂pj = 0, j = 1, . . . , k are satisfied.

This algorithm is so simple that there is no need to use sophisticated optimization tech-
niques. Ifrij > 0,∀i, j, Algorithm 1 globally converges to the unique minimum of (2). A
systematic study of the convergence is in [9].

Several machine learning work have used the Bradley-Terry model and one is to obtain
multi-class probability estimates from pairwise coupling [8]. For any data instancex, if
nij is the number of training data in theith or jth class, and

rij ≈ nijP (x in classi | x in classi or j)

is available, solving (2) obtains the estimate ofP (x in classi), i = 1, . . . , k. [13] tried to
extend this algorithm to other multi-class settings such as “one-against-the rest” or “error-
correcting coding,” but did not provide a convergence proof. In Section 5.2 we show that
the algorithm proposed in [13] indeed has some convergence problems.

In this paper, we propose a generalized Bradley-Terry model where each comparison is
between two disjoint subsets of subjects. Then from the results of team competitions, we
can approximate the skill of each individual. This model has many potential applications.
For example, from records of tennis or badminton doubles (or singles and doubles com-
bined), we may obtain the rank of all individuals. A useful application in machine learning
is multi-class probability estimates using error-correcting codes. We then introduce a sim-
ple iterative method to solve the generalized model with a convergence proof. Experiments
on multi-class probability estimates demonstrate the viability of the proposed model and
algorithm. Due to space limitation, we omit all proofs in this paper.

2 Generalized Bradley-Terry Model

We propose a generalized Bradley-Terry model where, using team competition results, we
can approximate individual skill levels. Consider a group ofk individuals: {1, . . . , k}.
Two disjoint subsetsI+

i andI−i form teams for games andri ≥ 0 (r′i ≥ 0) is the number
of times thatI+

i beatsI−i (I−i beatsI+
i ). Thus, we haveIi ⊂ {1, . . . , k}, i = 1, . . . ,m so

that
Ii = I+

i ∪ I−i , I+
i 6= ∅, I−i 6= ∅, andI+

i ∩ I−i = ∅.
Under the model that

P (I+
i beatsI−i ) =

∑

j∈I
+

i
πj

∑

j∈I
+

i
πj +

∑

j∈I
−
i

πj

=

∑

j∈I
+

i
πj

∑

j∈Ii
πj

,

we can define
qi ≡

∑

j∈Ii

pj , q+
i ≡

∑

j∈I
+

i

pj , q−i ≡
∑

j∈I
−
i

pj ,

and minimize the negative log likelihood

min
p

l(p) = −
m

∑

i=1

(

ri log(q+
i /qi) + r′i log(q−i /qi)

)

, (4)

under the same constraints of (2). IfIi, i = 1, . . . , k(k − 1)/2 are as the following:
I+
i I−i ri r′i
{1} {2} r12 r21

...
...

...
...

{k − 1} {k} rk−1,k rk,k−1



then (4) goes back to (2). The difficulty of solving (4) over solving (2) is that nowl(p)
is expressed in terms ofq+

i , q−i , qi but the real variable isp. The original Bradley-Terry
model is a special case of other statistical models such as log-linear or generalized linear
model, so methods other than Algorithm 1 (e.g., iterative scaling and iterative weighted
least squares) can also be used. However, (4) is not in a form of such models and hence
these methods cannot be applied. We propose the following algorithm to solve (4).

Algorithm 2
1. Start withp0

j > 0, j = 1, . . . , k and correspondingq0,+
i , q0,−

i , q0
i , i = 1, . . . ,m.

2. Repeat(t = 0, 1, . . .)
a. Lets = (t mod k) + 1. Forj = 1, . . . , k, define

pt,n
j ≡











P

i:s∈I
+
i

ri

q
t,+
i

+
P

i:s∈I
−
i

r′
i

q
t,−
i

P

i:s∈Ii

ri+r′
i

qt
i

pt
j if j = s,

pt
j if j 6= s.

(5)

b. Normalizept,n to p
t+1.

c. Updateqt,+
i , qt,−

i , qt
i to qt+1,+

i , qt+1,−
i , qt+1

i , i = 1, . . . ,m.
until ∂l(pt)/∂pj = 0, j = 1, . . . , k are satisfied.

For the multiplicative factor in (5) to be well defined (i.e., non-zero denominator), we
need Assumption 1, which will be discussed in Section 3. Eq. (5) is a simple fixed-point
type update; in each iteration, only one component (i.e.,pt

s) is modified while the others
remain the same. It is motivated from using a descent direction to strictly decreasel(p): If
∂l(pt)/∂ps 6= 0, then

∂l(pt)

∂ps

· (pt,n
s − pt

s) =

(

−
(

∂l(pt)

∂ps

)2

pt
s

)

/

(

∑

i:s∈Ii

ri + r′i
qt
i

)

< 0, (6)

where
∂l(p)

∂ps

= −
∑

i:s∈I
+

i

ri

q+
i

−
∑

i:s∈I
−
i

r′i
q−i

+
∑

i:s∈Ii

ri + r′i
qi

.

Thus,pt,n
s − pt

s is a descent direction in optimization since a sufficiently small step along
this direction guarantees the strict decrease of the function value. Since now we take the
whole direction without searching for the step size, more efforts are needed to prove the
strict decrease in Lemma 1. However, (6) does hint that (5) is a reasonable update.

Lemma 1 If pt
s > 0 is the index to be updated and∂l(pt)/∂ps 6= 0, thenl(pt+1) < l(pt).

If we apply the update rule (5) on the pairwise model,
∑

i:i6=s
rsi

pt
s

∑

i:i6=s
rsi

pt
s+pt

i

+
∑

i:i6=s
ris

pt
s+pt

i

pt
s =

∑

i:i6=s rsi
∑

i:i6=s
rsi+ris

pt
s+pt

i

and (5) goes back to (3).

3 Convergence of Algorithm 2

For any point satisfying∂l(p)/∂pj = 0, j = 1, . . . , k and constraints of (4), it is a sta-
tionary point of (4)1. We will prove that Algorithm 2 converges to such a point. If

1A stationary point means a Karash-Kunh-Tucker (KKT) point for constrained optimization prob-
lems like (2) and (4). Note that here∂l(p)/∂pj = 0 implies (and is more restricted than) the KKT
condition.



it stops in a finite number of iterations, then∂l(p)/∂pj = 0, j = 1, . . . , k, which
means a stationary point of (4) is already obtained. Thus, we only need to handle the
case where{pt} is an infinite sequence. As{pt}∞t=0 is in a compact (i.e., closed and
bounded) set{p | 0 ≤ pj ≤ 1,

∑k
j=1 pj = 1}, it has at least one convergent subse-

quence. Assumep∗ is one such convergent point. In the following we will prove that
∂l(p∗)/∂pj = 0, j = 1, . . . , k.

To prove the convergence of a fixed-point type algorithm, we need that ifp∗s > 0 and
∂l(p∗)/∂ps 6= 0, then fromp∗s we can use (5) to update it top∗,n

s 6= p∗s. We thus make the
following assumption to ensure thatp

∗
s > 0 (see also Theorem 1).

Assumption 1 For eachj ∈ {1, . . . , k},

∪i:i∈AIi = {1, . . . , k}, whereA = {i | (I+
i = {j}, ri > 0) or (I−i = {j}, r′i > 0)}.

That is, each individual forms a winning (losing) team in some competitions which together
involve all subjects.

An issue left in Section 2 is whether the multiplicative factor in (5) is well defined. With
Assumption 1 and initialp0

j > 0, j = 1, . . . , k, one can show by induction thatpt
j > 0,∀t

and hence the denominator of (5) is never zero: Ifpt
j > 0, Assumption 1 implies that

∑

i:j∈I
+

i
ri/qt,+

i or
∑

i:j∈I
−
i

r′i/qt,−
i is positive. Thus, both numerator and denominator in

the multiplicative factor are positive, and so ispt+1
j .

If rij > 0, the original Bradley-Terry model satisfies Assumption 1. No matter the model
satisfies the assumption or not, an easy way to fulfill it is to add an additional term

−µ
k

∑

s=1

log

(

ps
∑k

j=1 pj

)

(7)

to l(p), whereµ is a small positive number. That is, for eachs, we make anIi = {1, . . . , k}
with I+

i = {s}, ri = µ, andr′i = 0. As
∑k

j=1 pj = 1 is one of the constraints, (7) reduces

to−µ
∑k

s=1 log ps, which is a barrier term in optimization to ensure thatps does not go to
zero. The propertyp∗s > 0 and the convergence of Algorithm 2 are in Theorem 1:

Theorem 1 Under Assumption 1, any convergent pointp
∗ of Algorithm 2 satisfiesp∗s >

0, s = 1, . . . , k and is a stationary point of(4).

4 Asymptotic Distribution of the Maximum Likelihood Estimator

For the standard Bradley-Terry model, asymptotic distribution of the MLE (i.e.,p) has been
discussed in [5]. In this section, we discuss the asymptotic distribution for the proposed
estimator. To work on the real probabilityπ, we define

q̄i ≡
∑

j∈Ii
πj , q̄+

i ≡ ∑

j∈I
+

i
πj , q̄−i ≡ ∑

j∈I
−
i

πj ,

and considerni ≡ ri + r′i as a constant. Note thatri ∼ BIN(ni, q̄
+
i /q̄i) is a random

variable representing the number of times thatI+
i beatsI−i in ni competitions. By defining

for s, t = 1, . . . , k,

λss ≡ var
[

∂l(π)
∂ps

]

=
∑

i:s∈I
+

i

niq̄
−
i

q̄
+

i
q̄2

i

+
∑

i:s∈I
−
i

niq̄
+

i

q̄
−
i

q̄2
i

,

λst ≡ cov
[

∂l(π)
∂ps

, ∂l(π)
∂pt

]

=
∑

i:s,t∈I
+

i

q̄
−
i

ni

q̄
+

i
q̄2

i

−
∑

i:(s,t)∈I
+

i
×I

−
i

ni

q̄2
i

− ∑

i:(s,t)∈I
−
i
×I

+

i

ni

q̄2
i

+
∑

i:s,t∈I
−
i

q̄
+

i
ni

q̄
−
i

q̄2
i

, s 6= t,

we have the following theorem:



Theorem 2 Let n be the total number of comparisons. Ifri is independent ofrj ,∀i 6= j,
then

√
n(p1 − π1), . . . ,

√
n(pk−1 − πk−1) have for large samples the multivariate normal

distribution with zero means and dispersion matrix[λ′
st]

−1, where

λ′
st = λst − λsk − λtk + λkk, s, t = 1, . . . , k − 1.

5 Application to Multi-class Probability Estimates

Many classification methods are two-class based approaches and there are different ways
to extend them for multi-class cases. Most existing studies focus on predicting class labels
but not probability estimates. In this section, we discuss how the generalized Bradley-Terry
model can be applied to multi-class probability estimates.

Error-correction coding [7, 1] is a general method to construct binary classifiers and com-
bine them for multi-class prediction. It suggests some ways to constructI+

i andI−i ; both
are subsets of{1, . . . , k}. Then one trains a binary model using data from classes inI+

i

(I−i ) as positive (negative). Simple and commonly used methods such as “one-against-one”
and “one-against-the rest” are its special cases. Givenni the number of training data with
classes inIi = I+

i ∪ I−i , we assume here that for any datax,

ri ≈ niP (x in classes ofI+
i | x in classes ofI+

i or I−i ) (8)

is available, and the task is to approximateP (x in classs), s = 1, . . . , k. In the rest of this
section we discuss the special case “one-against-the rest” and the earlier results in [13].

5.1 Properties of the “One-against-the rest” Approach

For this approach,Ii, i = 1, . . . ,m are
I+
i I−i ri r′i
{1} {2, . . . , k} r1 1 − r1

{2} {1, 3, . . . , k} r2 1 − r2

...
...

...
...

Now n1 = · · · = nm = the total number of training data, so the solution to (4) is not
affected byni. Thus, we remove it from (8), sori + r′i = 1. As ∂l(p)/∂ps = 0 becomes

rs

ps

+
∑

j:j 6=s

r′j
1 − pj

= k, we have
r1

p1
− 1 − r1

1 − p1
= · · · =

rk

pk

− 1 − rk

1 − pk

= k−
k

∑

j=1

r′j
1 − pj

= δ,

whereδ is a constant. These equalities provide another way to solvep, andps = ((1 +

δ) −
√

(1 + δ)2 − 4rsδ)/2δ. Note that((1 + δ) +
√

(1 + δ)2 − 4rsδ)/2δ also satisfies
the equalities, but it is negative whenδ < 0, and greater than 1 whenδ > 0. By solving
∑m

s=1 ps = 1, we obtainδ and the optimalp.

From the formula ofps, if δ > 0, largerps implies smaller(1+δ)2−4rsδ and hence larger
rs. It is similar forδ < 0. Thus, the order ofp1, . . . , pk is the same as that ofr1, . . . , rk:

Theorem 3 If rs ≥ rt, thenps ≥ pt.

5.2 The Approach in [13] for Error-Correcting Codes

[13] was the first attempt to address the probability estimates using general error-correcting
codes. By considering the same optimization problem (4), it proposes a heuristic update
rule

pt,n
s ≡

∑

i:s∈I
+

i
ri +

∑

i:s∈I
−
i

r′i
∑

i:s∈I
+

i

niq
t,+

i

qt
i

+
∑

i:s∈I
−
i

niq
t,−
i

qt
i

pt
s, (9)



but does not provide a convergence proof. For a fixed-point update, we expect that at the
optimum, the multiplicative factor in (9) is one. However, unlike (5), when the factor is one,
(9) does not relate to∂l(p)/∂ps = 0. In fact, a simple example shows that this algorithm
may never converge. Taking the “one-against-the rest” approach, if we keep

∑k
i=1 pt

i = 1
and assumeni = 1, thenri + r′i = 1 and the factor in the update rule (9) is

rs+
P

i:i6=s
r′

i

pt
s+

P

i:i6=s
(1−pt

i
)

=
k−1+2rs−

P

k
i=1

ri

k−2+2pt
s

.

If the algorithm converges and the factor approaches one, thenps = (1+2rs−
∑k

i=1 ri)/2

but they may not satisfy
∑k

s=1 ps = 1. Therefore, if in the algorithm we keep
∑k

i=1 pt
i = 1

as [13] did, the factor may not approach one and the algorithm does not converge. More
generally, ifIi = {1, . . . , k},∀i, the algorithm may not converge. Asqt

i = 1, the condition
that the factor equals one can be written as a linear equation ofp. Together with

∑k
i=1 pi =

1, there is an over-determined linear system (i.e.,k + 1 equations andk variables).

6 Experiments on Multi-class Probability Estimates

6.1 Simulated Examples

We consider the same settings in [8, 12] by defining three possible class probabilities:
(a) p1 = 1.5/k, pj = (1 − p1)/(k − 1), j = 2, . . . , k.
(b) k1 = k/2 if k is even, and(k + 1)/2 if k is odd; thenp1 = 0.95 × 1.5/k1, pi =

(0.95− p1)/(k1 − 1) for i = 2, . . . , k1, andpi = 0.05/(k − k1) for i = k1 + 1, . . . , k.
(c) p1 = 0.95 × 1.5/2, p2 = 0.95 − p1, andpi = 0.05/(k − 2), i = 3, . . . , k.
Classes are competitive in case (a), but only two dominate in case (c). We then generateri

by adding some noise toq+
i /qi:

ri = min(max(ǫ,
q
+

i

qi
(1 + 0.1N(0, 1))), 1 − ǫ).

Thenr′i = 1 − ri. Hereǫ = 10−7 is used so that allri, r
′
i are positive. We consider the

four encodings used in [1] to generateIi:
1. “1vs1”: the pairwise approach (eq. (2)).
2. “1vsrest”: the “one-against-the rest” approach in Section 5.1.
3. “dense”:Ii = {1, . . . , k} for all i. Ii is randomly split to two equally-sized setsI+

i and
I−i . [10 log2 k] such splits are generated2. Following [1], we repeat this procedure 100
times and select the one whose[10 log2 k] splits have the smallest distance.

4. “sparse”:I+
i , I−i are randomly drawn from{1, . . . , k} with E(|I+

i |) = E(|I−i |) = k/4.
Then[15 log2 k] such splits are generated. Similar to “dense,” we repeat the procedure
100 times to find a good coding.

Figure 1 shows averaged accuracy rates over 500 replicates for each of the four methods
whenk = 22, 23, . . . , 26. “1vs1” is good for (a) and (b), but suffers some losses in (c),
where the class probabilities are highly unbalanced. [12] has observed this and proposed
some remedies. “1vsrest” is quite competitive in all three scenarios. Furthermore, “dense”
and “sparse” are less competitive in cases (a) and (b) whenk is large. Due to the large
|I+

i | and|I−i |, the model is unable to single out a clear winner when probabilities are more
balanced. We also analyze the (relative) mean square error (MSE) in Figure 2:

MSE =
1

500

500
∑

j=1

(

k
∑

i=1

(p̂j
i − pi)

2/

k
∑

i=1

p2
i

)

, (10)

wherep̂
j is the probability estimate obtained in thejth of the 500 replicates. Results of

Figures 2(b) and 2(c) are consistent with those of the accuracy. Note that in Figure 2(a), as
p (andp̂

j) are balanced,
∑k

i=1(p̂
j
i − pi)

2 is small. Hence, all approaches have small MSE
though some have poor accuracy.

2We use[x] to denote the nearest integer value ofx.
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Figure 1: Accuracy by the four encodings: “1vs1” (dashed line, square), “1vsrest” (solid
line, cross), “dense” (dotted line, circle), “sparse” (dashdot line, asterisk)
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Figure 2: MSE by the four encodings: legend the same as Figure 1

6.2 Experiments on Real Data

In this section we present experimental results on some real-world multi-class problems.
They have been used in [12], which provides more information about data preparation. Two
problem sizes, 300/500 and 800/1,000 for training/testing, are used. 20 training/testing
splits are generated and the testing error rates are averaged. All data used are available
athttp://www.csie.ntu.edu.tw/˜cjlin/papers/svmprob/data. We use
the same four ways in Section 6.1 to generateIi. All of them have|I1| ≈ · · · ≈ |Im|. With
the property that these multi-class problems are reasonably balanced, we setni = 1 in (8).

Since there are no probability values available for these problems, we compare the accu-
racy by predicting the label with the largest probability estimate. The purpose here is to
compare the four probability estimates but not to check the difference from existing multi-
class classification techniques. We consider support vector machines (SVM) [4] with the
RBF kernel as the binary classifier. An improved version [10] of [11] obtainsri. Full
SVM parameter selection is conducted before testing, although due to space limitation, we
omit details here. The code is modified fromLIBSVM [3], a library for support vector
machines. The resulting accuracy is in Table 1 for smaller and larger training/testing sets.
Except “1vs1,” the other three approaches are quite competitive. These results indicate that
practical problems are more similar to the case of (c) in Section 6.1, where few classes
dominate. This observation is consistent with the findings in [12]. Moreover, “1vs1” suf-
fers some losses whenk is larger (e.g.,letter), the same as in Figure 1(c); so for “1vs1,”
[12] proposed using a quadratic model instead of the Bradley-Terry model.

In terms of the computational time, because the number of binary problems for “dense” and
“sparse” ([10 log2 k] and[15 log2 k], respectively) is larger thank, and each binary problem



involves many classes of data (all and one half), their training time is longer than “1vs1”
and “1vsrest.” “Dense” is particularly time consuming. Note that though “1vs1” solves
k(k−1)/2 binaries, it is efficient as each binary problem involves only two classes of data.

Table 1: Average of 20 test errors (in percentage) by four encodings (lowest boldfaced)
300 training and 500 testing 800 training and 1,000 testing

Problem k 1vs1 1vsrest dense sparse 1vs1 1vsrest dense sparse
dna 3 10.47 10.33 10.45 10.19 6.21 6.45 6.415 6.345
waveform 3 15.01 15.35 15.66 15.12 13.525 13.635 13.76 13.99
satimage 6 14.22 15.08 14.72 14.8 11.54 11.74 11.865 11.575
segment 7 6.24 6.69 6.62 6.19 3.295 3.605 3.52 3.25
USPS 10 11.37 10.89 10.81 11.14 7.78 7.49 7.31 7.575
MNIST 10 13.84 12.56 13.0 12.29 8.11 7.37 7.59 7.535
letter 26 39.73 35.17 33.86 33.88 21.11 19.685 20.14 19.49

In summary, we propose a generalized Bradley-Terry model which gives individual skill
from group competition results. A useful application to general multi-class probability
estimate is demonstrated.
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