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Abstract

Spike sorting involves clustering spike trains recorded by a micro-
electrode according to the source neuron. It is a complicated problem,
which requires a lot of human labor, partly due to the non-stationary na-
ture of the data. We propose an automated technique for the clustering
of non-stationary Gaussian sources in a Bayesian framework. At a first
search stage, data is divided into short time frames and candidate descrip-
tions of the data as a mixture of Gaussians are computed for each frame.
At a second stage transition probabilities between candidate mixtures are
computed, and a globally optimal clustering is found as the MAP so-
lution of the resulting probabilistic model. Transition probabilities are
computed using local stationarity assumptions and are based on a Gaus-
sian version of the Jensen-Shannon divergence. The method was applied
to several recordings. The performance appeared almost indistinguish-
able from humans in a wide range of scenarios, including movement,
merges, and splits of clusters.

1 Introduction

Neural spike activity is recorded with a micro-electrode which normally picks up the ac-
tivity of multiple neurons. Spike sorting seeks the segmentation of the spike data such that
each cluster contains all the spikes generated by a different neuron. Currently, this task is
mostly done manually. It is a tedious mission, requiring many hours of human labor for
each recording session. Several algorithms were proposed in order to help automating this
process (see [7] for a review, [9],[10]) and some tools were implemented to assist in manual
sorting [8]. However, the ability of suggested algorithms to replace the human worker has
been quite limited.

One of the main obstacles to a successful application is the non-stationary nature of the data
[7]. The primary source of this non-stationarity is slight movements of the recording elec-



trode. Slight drifts of the electrode’s location, which are almost inevitable, cause changes in
the typical shapes of recorded spikes over time. Other sources of non-stationarity include
variable background noise and changes in the characteristic spike generated by a certain
neuron. The increasing usage of multiple electrode systems turns non-stationarity into an
acute problem, as electrodes are placed in a single location for long durations.

Using the first 2 PCA coefficients to represent the data (which preserves up to93% of the
variance in the original recordings [1]), a human can cluster spikes by visual inspection.
When dividing the data into small enough time frames, cluster density can be approximated
by a multivariate Gaussian with a general covariance matrix without loosing much accu-
racy [7]. Problematic scenarios which can appear due to non-stationarity are exemplified
in Section 4.2 and include: (1) Movements and considerable shape changes of the clus-
ters over time, (2) Two clusters which are reasonably well-separated may move until they
converge and become indistinguishable. A split of a cluster is possible in the same manner.

Most spike sorting algorithms do not address the presented difficulties at all, as they assume
full stationarity of the data. Some methods [4, 11] try to cope with the lack of stationarity by
grouping data into many small clusters and identifying the clusters that can be combined
to represent the activity of a single unit. In the second stage, [4] uses ISI information
to understand which clusters cannot be combined, while [11] bases this decision on the
density of points between clusters. In [3] a semi-automated method is suggested, in which
each time frame is clustered manually, and then the correspondence between clusters in
consecutive time frames is established automatically. The correspondence is determined
by a heuristic score, and the algorithm doesn’t handle merge or split scenarios.

In this paper we suggest a new fully automated technique to solve the clustering problem
for non-stationary Gaussian sources in a Bayesian framework. We divide the data into
short time frames in which stationarity is a reasonable assumption. We then look for good
mixture of Gaussians descriptions of the data in each time frame independently. Transi-
tion probabilities between local mixture solutions are introduced, and a globally optimal
clustering solution is computed by finding the Maximum-A-Posteriori (MAP) solution of
the resulting probabilistic model. The global optimization allows the algorithm to success-
fully disambiguate problematic time frames and exhibit close to human performance. We
present the outline of the algorithm in Section 2. The transition probabilities are computed
by optimizing the Jensen-Shannon divergence for Gaussians, as described in Section 3.
Empirical results and validation are presented in Section 4.

2 Clustering using a chain of Gaussian mixtures

Denote the observable spike data byD = {d}, where each spiked ∈ Rn is de-
scribed by the vector of its PCA coefficients. We break the data intoT disjoint groups

{Dt = {dt
i}

Nt

i=1}
T

t=1
. We assume that in each frame, the data can be well approximated by

a mixture of Gaussians, where each Gaussian corresponds to a single neuron. Each Gaus-
sian in the mixture may have a different covariance matrix. The number of components in
the mixture is not known a priori, but is assumed to be within a certain range (we used 1-6).

In the search stage, we use a standard EM (Expectation-Maximization) algorithm to find
a set ofM t candidate mixture descriptions for each time framet. We build the set of
candidates using a three step process. First, we run the EM algorithm with different number
of clusters and different initial conditions. In a second step, we import to each time frame
t the best mixture solutions found in the neighboring time frames[t − k, .., t + k] (we
usedk = 2). These solutions are also adapted by using them as the initial conditions for
the EM and running a low number of EM rounds. This mixing of solutions between time
frames is repeated several times. Finally, the solution list in each time frame is pruned
to remove similar solutions. Solutions which don’t comply with the assumption of well



shaped Gaussians are also removed.

In order to handle outliers, which are usually background spikes or non-spike events, each
mixture candidate contains an additional ’background model’ Gaussian. This model’s pa-
rameters are set to0,K · Σt whereΣt is the covariance matrix of the data in framet and
K > 1 is a constant. Only the weight of this model is allowed to change during the EM
process.

After the search stage, each time framet has a list ofM t models{Θt
i}

T,Mt

t=1,i=1. Each mix-

ture model is described by a tripletΘt
i = {αt

i,l, µ
t
i,l,Σ

t
i,l}

Ki,t

l=1
, denoting Gaussian mixture’s

weights, means, and covariances respectively. Given these candidate models we define a
discrete random vectorZ = {zt}

T

t=1 in which each componentzt has a value range of
{1, 2, ..,M t}. ”z t = j” has the semantics of ”at time framet the data is distributed accord-
ing to the candidate mixtureΘt

j”. In addition we define for each spikedt
i a hidden discrete

’label’ random variablelti . This label indicates which Gaussian in the local mixture hy-

pothesis is the source of the spike. Denote byLt = {lti}
Nt

i=1 the vector of labels of time
framet, and byL the vector of all the labels.
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Figure 1:(A) A Bayesian network model of the data generation process. The network has an HMM
structure, but unlike HMM it does not have fixed states and transition probabilities over time. The
variables and the CPDs are explained in Section 2. (B) A Bayesian network representation of the
relations between the dataD and the hidden labelsH (see Section 3.1). The visible labelsL and the
sampled data points are independent given the hidden labels.

We describe the probabilistic relations betweenD, L, andZ using a Bayesian network
with the structure described in Figure 1A. Using the network structure and assuming i.i.d
samples the joint log probability decomposes into

log P (z1) +

T∑

t=2

logP (zt|zt−1) +

T∑

t=1

Nt∑

i=1

[log P (lti |z
t) + log P (dt

i|l
t
i , z

t)] (1)

We wish to maximize this log-likelihood over all possible choices ofL,Z. Notice that
by maximizing the probability of both data and labels we avoid the tendency to prefer
mixtures with many Gaussians, which appears when maximizing the probability for the
data alone. The conditional probability distributions (CPDs) of the points’ labels and the
points themselves, given an assignment toZ, are given by

log P (ltk = j|zt = i) = log αt
i,j (2)

log P (dt
k|l

t
i = j, zt = i) = −

1

2
[n log 2π + log |Σt

i,j | + (dt
k − µt

i,j)
t
Σt

i,j

−1
(dt

k − µt
i,j)]

The transition CPDsP (zt|zt−1) are described in Section 3. For the first frame’s prior we
use a uniform CPD. The MAP solution for the model is found using the Viterbi algorithm.
Labels are then unified using the correspondences established between the chosen mixtures
in consecutive time frames. As a final adjustment step, we repeat the mixing process using
only the mixtures of the found MAP solution. Using this set of new candidates, we calculate
the final MAP solution in the same manner described above.



3 A statistical distance between mixtures

The transition CPDs of the formP (zt|zt−1) are based on the assumption that the Gaus-
sian sources’ distributions are approximately stationary in pairs of consecutive time frames.
Under this assumption, two mixtures candidates estimated at consecutive time frames are
viewed as two samples from a single unknown Gaussian mixture. We assume that each
Gaussian component from any of the two mixtures arises from a single Gaussian compo-
nent in the joint hidden mixture, and so the hidden mixture induces a partition of the set of
visible components into clusters. Gaussian components in the same cluster are assumed to
arise from the same hidden source. Our estimate ofp(zt = j|zt−1 = i) is based on the
probability of seeing two large samples with different empirical distributions (Θt−1

i andΘt
j

respectively) under the assumption of such a single joint mixture. In Section 3.1, the esti-
mation of the transition probability is formalized as an optimization of a Jensen-Shannon
based score over the possible partitions of the Gaussian components set.

If the family of allowed hidden mixture models is not further constrained, the optimization
problem derived in Section 3.1 is trivially solved by choosing the most detailed partition
(each visible Gaussian component is a singleton). This happens because a richer partition,
which does not merge many Gaussians, gets a higher score. In Section 3.2 we suggest
natural constraints on the family of allowed partitions in the two cases of constant and
variable number of clusters through time, and present algorithms for both cases.

3.1 A Jensen-Shannon based transition score

Assume that in two consecutive time frames we observed two labeled samples
(X1, L1), (X2, L2) of sizesN1, N2 with empirical distributionsΘ1,Θ2 respectively. By
’empirical distribution’, or ’type’ in the notation of [2], we denote the ML parameters of
the sample, for both the multinomial distribution of the mixture weights and the Gaus-
sian distributions of the components. As stated above, we assume that the joint sample
of sizeN = N1 + N2 is generated by a hidden Gaussian mixtureΘH with KH com-
ponents, and its components are determined by a partition of the set of all components
in Θ1,Θ2. For convenience of notation, let us order this set ofK1 + K2 Gaussians
and refer to them (and to their parameters) using one index. We can define a function
R : {1, ..,K1 + K2} → {1, ..,KH} which matches each visible Gaussian component in
Θ1 or Θ2 to its hidden source component inΘH . Denote the labels of the sample points

under the hidden mixtureH = {hj
i}

Nj

i=1, j = 1, 2. The values of these variables are given
by h

j
i = R(lji ), wherel

j
i is the label index in the set of all components.

The probabilistic dependence between a data point, its visible label, and its hidden label is
explained by the Bayesian network model in Figure 1B. We assume a data point is obtained
by choosing a hidden label and then sample the point from the relevant hidden component.
The visible label is then sampled based on the hidden label using a multinomial distribution
with parametersΨ = {Ψq}

K1+K2

q=1 , whereΨq = P (l = q|h = R(q)), i.e., the probability
of the visible labelq given the hidden labelR(q) (sinceH is deterministic givenL, P (l =
q|h) = 0 for h 6= R(q)). Denote this model, which is fully determined byR,Ψ, andΘH ,
by MH .

We wish to estimateP ((X1, L1) ∼ Θ1|(X2, L2) ∼ Θ2,MH). We use ML approxima-
tions and arguments based on the method of types [2] to approximate this probability and
optimize it with respect toΘH andΨ. The obtained result is (the derivation is omitted)

P ((X1, L1) ∼ Θ1|(X2, L2) ∼ Θ2,MH) ≈ (3)



max
R

exp(−N ·

KH∑

m=1

αH
m

∑

{q:R(q)=m}

ΨqDkl(G(x|µq,Σq)|G(x|µH
m,ΣH

m)))

whereG(x|µ,Σ) denotes a Gaussian distribution with the parametersµ,Σ and the opti-
mizedΘH ,Ψ appearing here are given as follows. Denote bywq (q ∈ {1, ..,K1 + K2})

the weight of modelq in a naive joint mixture ofΘ1,Θ2, i.e.,wq = Nj

N
αq wherej = 1 if

componentq is part ofΘ1 and the same forj = 2.

αH
m =

∑

{q:R(q)=m}

wq , Ψq =
wq

αH
R(q)

, µH
m =

∑

{q:R(q)=m}

Ψqµq (4)

ΣH
m =

∑

{q:R(q)=m}

Ψq(Σq + (µq − µH
m)(µq − µH

m)t)

Notice that the parameters of a hidden Gaussian,µH
m andΣH

m, are just the mean and covari-
ance of the mixture

∑
q:R(q)=m ΨqG(x|µq,Σq). The summation overq in expression (3)

can be interpreted as the Jensen-Shannon (JS) divergence between the components assigned
to the hidden sourcem, under Gaussian assumptions.

For a given parametric family, the JS divergence is a non-negative measurement which
can be used to test whether several samples are derived from a single distribution from the
family or from a mixture of different ones [6]. The JS divergence is computed for a mixture
of n empirical distributionsP1, .., Pn with mixture weightsπ1, .., πn. In the Gaussian
case, denote the mean and covariance of the component distributions by{µi,Σi}

n

i=1. The
mean and covariance of the mixture distributionµ∗,Σ∗ are a function of the means and
covariances of the components, with the formulae given in (4) forµH

m,ΣH
m. The Gaussian

JS divergence is given by

JSG
π1,..,πn

(P1, .., Pn) =
n∑

i=1

πiDkl(G(x|µi,Σi), G(x|µ∗,Σ∗)) (5)

= H(G(x|µ∗,Σ∗)) −

n∑

i=1

πiH(G(x|µi,Σi)) =
1

2
(log |Σ∗| −

n∑

i=1

πi log |Σi|)

using this identity in (3), and settingΘ1 = Θt
i,Θ

2 = Θt−1
j , we finally get the following

expression for the transition probability

log P (zt = i|zt−1 = j) = (6)

−N · max
R

KH∑

m=1

αH
mJSG

{Ψq:R(q)=m}({G(x|µq,Σq) : R(q) = m})

3.2 Constrained optimization and algorithms

Consider first the case in which a one-to-one correspondence is assumed between clusters
in two consecutive frames, and hence the number of Gaussian componentsK is constant
over all time frames. In this case, a mappingR is allowed iff it maps to each hidden
sourcei a single Gaussian from mixtureΘ1 and a single Gaussian fromΘ2. Denoting
the Gaussians matched to hiddeni by R−1

1 (i), R−1
2 (i), the transition score (6) takes the

form of −N · max
R

K∑
i=1

S(R−1
1 (i), R−1

2 (i)). Such an optimization of a pairwise matching

score can be seen as a search for a maximal perfect matching in a weighted bipartite graph.
The nodes of the graph are the Gaussian components ofΘ1,Θ2 and the edges’ weights are



given by the scoresS(a, b). The global optimum of this problem can be efficiently found
using the Hungarian algorithm [5] inO(n3), which is unproblematic in our case.

The one-to-one correspondence assumption is too strong for many data sets in the spike
sorting application, as it ignores the phenomena of splits and merges of clusters. We wish
to allow such phenomena, but nevertheless enforce strong (though not perfect) demands of
correspondence between the Gaussians in two consecutive frames. In order to achieve such
balance, we place the following constraints on the allowed partitionsR:

1. Each cluster ofR should contain exactly one Gaussian fromΘ1 or exactly one
Gaussian fromΘ2. Hence assignment of different Gaussians from the same mix-
ture to the same hidden source is limited only for cases of a split or a merge.

2. The label entropy of the partitionR should satisfy

H(αH
1 , .., αH

KH ) ≤
N1

N
H(α1

1, .., α
1
K1) +

N2

N
H(α2

1, .., α
2
K2) (7)

Intuitively, the second constraint limits the allowed partitions to ones which are not richer
than the visible partition, i.e., do not have much more clusters. Note that the most detailed
partition (the partition into singletons) has a label entropy given by the r.h.s of inequality
(7) plusH(N1

N
, N2

N
), which is one bit forN1 = N2. This extra bit is the price of using the

concatenated ’rich’ mixture, so we look for mixtures which do not pay such an extra price.

The optimization for this family ofR does not seem to have an efficient global optimiza-
tion technique, and thus we resort to a greedy procedure. Specifically, we use a bottom
up agglomerative algorithm. We start from the most detailed partition (each Gaussian is a
singleton) and merge two clusters of the partition at each round. Only merges that com-
ply with the first constraint are considered. At each round we look for a merge which
incurs a minimal loss to the accumulated Jensen Shannon score (6) and a maximal loss to
the mixture label entropy. For two Gaussian clusters(α1, µ1,Σ1), (α2, µ2,Σ2) these two
quantities are given by

∆log JS = −N(w1 + w2)JSG
π1,π2

(G(x|µ1,Σ1), G(x|µ2,Σ2)) (8)

∆H = −N(w1 + w2)H(π1, π2)

whereπ1, π2 are w1

w1+w2

, w2

w1+w2

and wi are as in (4). We choose at each round the merge
which minimizes the ratio between these two quantities. The algorithm terminates when
the accumulated label entropy reduction is bigger thanH(N1

N
, N2

N
) or when no allowed

merges exist anymore. In the second case, it may happen that the partitionR found by the
algorithm violates the constraint (7). We nevertheless compute the score based on theR
found, since this partition obeys the first constraint and usually is not far from satisfying
the second.

4 Empirical results

4.1 Experimental design and data acquisition

Neural data were acquired from the dorsal and ventral pre-motor (PMd, PMv) cortices of
two Macaque monkeys performing a prehension (reaching and grasping) task. At the be-
ginning of each trial, an object was presented in one of six locations. Following a delay
period, a Go signal prompted the monkey to reach for, grasp, and hold the target object.
A recording session typically lasted 2 hours during which monkeys completed 600 tri-
als. During each session 16 independently-movable glass-plated tungsten micro-electrodes



f 1

2

score Number of frames (%) Number of electrodes (%)
0.9-1.0 3386 (75%) 13 (30%)
0.8-0.9 860 (19%) 10 (23%)
0.7-0.8 243 (5%) 10 (23%)
0.6-0.7 55 (1%) 11 (25%)

Table 1: Match scores between manual and automatic clustering. The rows list the appearance
frequencies of differentf 1

2

scores.

were inserted through the dura, 8 into each area. Signals from these electrodes were am-
plified (10K), bandpass filtered (5-6000Hz), sampled (25 kHz), stored on disk (Alpha-Map
5.4, Alpha-Omega Eng.), and subjected to 3-stage preprocessing. (1) Line influences were
cleaned by pulse-triggered averaging: the signal following a pulse was averaged over many
pulses and subtracted from the original in an adaptive manner. (2) Spikes were detected
by a modified second derivative algorithm (7 samples backwards and 11 forward), accen-
tuating spiky features; segments that crossed an adaptive threshold were identified. Within
each segment, a potential spike’s peak was defined as the time of the maximal derivative.
If a sharper spike was not encountered within 1.2ms, 64 samples (10 before peak and 53
after) were registered. (3) Waveforms were re-aligned s.t. each started at the point of max-
imal fit with 2 library PCs (accounting, on average, for82% and11% of the variance, [1]).
Aligned waveforms were projected onto the PCA basis to arrive at two coefficients.

4.2 Results and validation
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Figure 2: Frames3,12,24,34, and47 from a68-frames data set. Each frame contains1000 spikes,
plotted here (with random number assignments) according to their first two PCs. In this data one
cluster moves constantly, another splits into distinguished clusters, and at the end two clusters are
merged. The top and bottom rows show manual and automatic clustering solutions respectively.
Notice that during the split process of the bottom left area some ambiguous time frames exist in
which 1,2, or 3 cluster descriptions are reasonable. This ambiguity can be resolved using global
considerations of past and future time frames. By finding the MAP solution over all time frames, the
algorithm manages such considerations. The numbers below the images show thef 1

2

score of the
local match between the manual and the automatic clustering solutions (see text).

We tested the algorithm using recordings of44 electrodes containing a total of4544 time
frames. Spike trains were manually clustered by a skilled user in the environment of Alpha-
Sort 4.0 (Alpha-Omega Eng.). The manual and automatic clustering results were compared
using a combined measure of precisionP and recallR scoresf 1

2

= 2PR
R+P

. Figure 2 demon-
strates the performance of the algorithm using a particularly non-stationary data set.

Statistics on the match between manual and automated clustering are described in Table
1. In order to understand the score’s scale we note that random clustering (with the same



label distribution as the manual clustering) gets anf 1

2

score of 0.5. The trivial clustering
which assigns all the points to the same label gets mean scores of0.73 and0.67 for single
frame matching and whole electrode matching respectively. The scores of single frames
are much higher than the full electrode scores, since the problem is much harder in the
latter case. A single wrong correspondence between two consecutive frames may reduce
the electrode’s score dramatically, while being unnoticed by the single frame score. In most
cases the algorithm gives reasonably evolving clustering, even when it disagrees with the
manual solution. Examples can be seen at the authors’ web site1.

Low matching scores between the manual and the automatic clustering may result from
inherent ambiguity in the data. As a preliminary assessment of this hypothesis we obtained
a second, independent, manual clustering for the data set for which we got the lowest
match scores. The matching scores between manual and automatic clustering are presented
in Figure 3A.
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Figure 3: (A) Comparison of our automatic clustering with 2 independent manual clustering solu-
tions for our worst matched data points. Note that there is also a low match between the humans,
forming a nearly equilateral triangle. (B) Functional validation of clustering results: (1) At the begin-
ning of a recording session, three clusters were identified. (2) 107 minutes later, some shifted their
position. They were tracked continuously. (3) The directional tuning of the top left cluster (number 3)
during the delay periods of the first 100 trials (dashed lines are99% confidence limits). (4) Although
the cluster’s position changed, its tuning curve’s characteristics during the last 100 trials were similar.

In some cases, validity of the automatic clustering can be assessed by checking functional
properties associated with the underlying neurons. In Figure 3B we present such a valida-
tion for a successfully tracked cluster.
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