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Abstract

An important aspect of clustering algorithms is whether the partitions
constructed on finite samples converge to a useful clustering of the whole
data space as the sample size increases. This paper investigates this
question for normalized and unnormalized versions of the popular spec-
tral clustering algorithm. Surprisingly, the convergence of unnormalized
spectral clustering is more difficult to handle than the normalized case.
Even though recently some first results on the convergence of normal-
ized spectral clustering have been obtained, for the unnormalized case
we have to develop a completely new approach combining tools from
numerical integration, spectral and perturbation theory, and probability.
It turns out that while in the normalized case, spectral clustering usually
converges to a nice partition of the data space, in the unnormalized case
the same only holds under strong additional assumptions which are not
always satisfied. We conclude that our analysis gives strong evidence for
the superiority of normalized spectral clustering. It also provides a basis
for future exploration of other Laplacian-based methods.

1 Introduction

Clustering algorithms partition a given data set into several groups based on some notion
of similarity between objects. The problem of clustering is inherently difficult and often
lacks clear criteria of “goodness”. Despite the difficulties in determining the quality of a
given partition, it is still possible to study desirable properties of clusteringalgorithmsfrom
a theoretical point of view. In this paper we study the consistency of spectral clustering,
which is an important property in the general framework of statistical pattern recognition.
A clustering algorithm is consistent if it produces a well-defined (and, hopefully, sensible)
partition, given sufficiently many data points. The consistency is a basic sanity check, as an
algorithm which is not consistent would change the partition indefinitely as we add points to
the dataset, and, consequently, no reasonable small-sample performance could be expected
at all. Surprisingly, relatively little research into consistency of clustering algorithms has



been done so far, exceptions being onlyk-centers (Pollard, 1981) and linkage algorithms
(Hartigan, 1985).

While finite-sample properties of spectral clustering have been studied from a theoretical
point of view (Spielman and Teng, 1996; Guattery and Miller, 1998; Kannan et al., 2000;
Ng et al., 2001; Meila and Shi, 2001) we focus on the limit behavior for sample size tending
to infinity. In this paper we develop a new strategy to prove convergence results for spectral
clustering algorithms. Unlike our previous attempts this strategy allows to obtain results
for both normalized and unnormalized spectral clustering. As a first result we can recover
the main theorem of von Luxburg et al. (2004), which had been proved with different and
more restrictive methods, and, in brief, states that usually normalized spectral clustering
converges. We also extend that result to the case of multiple eigenvectors. Our second result
concerns the case of unnormalized spectral clustering, for which no convergence properties
had been known so far. This case is much more difficult to treat than the normalized
case, as the limit operators have a more complicated form. We show that unnormalized
spectral clustering also converges, but only under strong additional assumptions. Contrary
to the normalized case, those assumptions are not always satisfied, as we can show by
constructing an example, and in this case there is no hope for convergence. Even worse,
on a finite sample it is impossible to verify whether the assumptions hold or not. As a third
result we prove statements about the form of the limit clustering. It turns out that in case
of convergence, the structure of the clustering constructed on finite samples is conserved in
the limit process. From this we can conclude that if convergence takes place, then the limit
clustering presents an intuitively appealing partition of the data space.

It is also interesting to note that several recent methods for semi-supervised and transduc-
tive learning are based on eigenvectors of similarity graphs (cf. Belkin and Niyogi, 2003;
Chapelle et al., 2003; Zhu et al., 2003). Our theoretical framework can also be applied to
investigate the consistency of those algorithms with respect to the unlabeled data.

There is an ongoing debate on the advantages of the normalized versus unnormalized graph
Laplacians for spectral clustering. It has been found empirically that the normalized version
performs as well or better than the unnormalized version (e.g., Van Driessche and Roose,
1995; Weiss, 1999; in the context of semi-supervised learning see also Zhou et al., 2004).
We are now able to provide additional evidence to this effect from a theoretical point of
view. Normalized spectral clustering is a well-behaved algorithm which always converges
to a sensible limit clustering. Unnormalized spectral clustering on the other hand should be
treated with care as consistency can only be asserted under strong assumptions which are
not always satisfied and, moreover, are difficult to check in practice.

2 Graph Laplacians and spectral clustering on finite samples

In the following we denote byσ(T ) the spectrum of a linear operator, byC(X ) the space
of continuous functions onX with infinity norm, and byrg(d) the range of a function
d ∈ C(X ). For given sample pointsX1, ..., Xn drawn iid according to an (unknown) dis-
tribution P on some data spaceX we denote the empirical distribution byPn. For a non-
negative, symmetric similarity functions : X×X → IR we define the similarity matrix
asKn := (s(Xi, Xj))i,j=1,...,n, setdi :=

∑n
j=1

s(Xi, Xj), and define the degree matrix
Dn as the diagonal matrix with entriesdi. The unnormalized Laplacian matrix is defined
asLn := Dn − Kn, and two common ways of normalizing it areL′

n := D
−1/2

n LnD
−1/2

n

or L′′
n := D−1

n Ln. In the following we always arrange the eigenvalues of the Laplacian
matrices in non-decreasing order0 = λ1 ≤ λ2... ≤ λn respecting their multiplicities. In its
simplest form, unnormalized (resp. normalized) spectral clustering partitions the sample
pointsXi into two groups according to whether thei-th coordinate of the second eigen-
vector is larger or smaller than a certain thresholdb ∈ IR. Often, instead of considering



only the second eigenvector, one uses the firstr eigenvectors (for some small numberr)
simultaneously to obtain a partition into several sets. For an overview of different spectral
clustering algorithms see for example Weiss (1999).

3 Limit results

In this section we want to state and discuss our main results. Thegeneral assumptions
in the following three theorems are that the data spaceX is a compact metric space from
which the sample points(Xi)i∈IN are drawn independently according to an unknown prob-
ability distributionP . Moreover we require the similarity functions : X×X → IR to be
continuous, and in the normalized case to be bounded away from 0, that iss(x, y) > l > 0
for all x, y ∈ X and somel ∈ IR. By d ∈ C(X ) we will denote the “degree function”, and
U ′ andU will denote the “limit operators” ofL′

n andLn for n → ∞. The exact definitions
of these functions and operators, as well as all further mathematical details, definitions, and
proofs will be postponed to Section 4.

Let us start with the first question raised in the introduction: does the spectral clustering
constructed on a finite sample converge to a partition of the whole data space if the sample
size increases? In the normalized case, convergence results have recently been obtained
in von Luxburg et al. (2004). However, those methods were specifically designed for the
normalized Laplacian and cannot be used in the unnormalized case. Here we state a con-
vergence result for the normalized case in the form how it can be obtained with our new
methods. The theorem is formulated for the symmetric normalizationL′

n, but it holds
similarly for the normalizationL′′

n.

Theorem 1 (Convergence of normalized spectral clustering)Under the general as-
sumptions, if the firstr eigenvalues of the limit operatorU ′ have multiplicity 1, then the
same holds for the firstr eigenvalues ofL′

n for sufficiently largen. In this case, the firstr
eigenvalues ofL′

n converge to the firstr eigenvalues ofU ′, and the corresponding eigenvec-
tors converge almost surely. The partitions constructed by normalized spectral clustering
from the firstr eigenvectors on finite samples converge almost surely to a limit partition of
the whole data space.

Our new result about the convergence in the unnormalized case is the following:

Theorem 2 (Convergence of unnormalized spectral clustering)Under the general as-
sumptions, if the firstr eigenvalues of the limit operatorU have multiplicity 1 and are not
element ofrg(d), then the same holds for the firstr eigenvalues of1nLn for sufficiently
largen. In this case, the firstr eigenvalues of1nLn converge to the firstr eigenvalues ofU ,
and the the corresponding eigenvectors converge almost surely. The partitions constructed
by unnormalized spectral clustering from the firstr eigenvectors on finite samples converge
almost surely to a limit partition of the whole data space.

On the first glance, this theorem looks very similar to Theorem 1: if the general assump-
tions are satisfied and the first eigenvalues are “nice”, then unnormalized spectral cluster-
ing converges. However, the difference between Theorems 1 and 2 is what it means for
an eigenvalue to be “nice”. In Theorem 1 we only require the eigenvalues to have mul-
tiplicity 1 (and in fact, if the multiplicity is larger than 1 we can still prove convergence
of eigenspaces instead of eigenvectors). In Theorem 2, however, the conditionλ 6∈ rg(d)
has to be satisfied. In the proof this is needed to ensure that the eigenvalueλ is isolated
in the spectrum ofU , which is a fundamental requirement for applying perturbation theory
to the convergence of eigenvectors. If this condition is not satisfied, perturbation theory
is in principle unsuitable to obtain convergence results for eigenvectors. The reason why
this condition appears in the unnormalized case but not in the normalized case lies in the



structure of the respective limit operators, which, surprisingly, is more complicated in the
unnormalized case than in the normalized one. In the next section we will construct an ex-
ample where the second eigenvalue indeed lies withinrg(d). This means that there actually
exist situations in which Theorem 2 cannot be applied, and hence unnormalized spectral
clustering might not converge.

Now we want to turn to the second question raised in the introduction: In case of conver-
gence, is the limit clustering a reasonable clustering of the whole data space? To answer
this question we analyze the structure of the limit operators (for simplicity we state this
for the unnormalized case only). Assume that we are given a partitionX = ∪k

i=1
Xi

of the data space intok disjoint sets. If we order the sample points according to their
memberships in the setsXi, then we can write the Laplacian in form of a block matrix
Ln ≃ (Lij,n)i,j=1,...,k where each sub-matrixLij,n contains the rows ofLn corresponding
to points in setXi and the columns corresponding to points inXj . In a similar way, the limit
operatorU can be decomposed into a matrix of operatorsUij : C(Xj) → C(Xi). Now we
can show that for alli, j = 1, ..., k the sub-matrices1nLij,n converge to the corresponding
sub-operatorsUij such that their spectra converge in the same way as in Theorems 1 and 2.
This is a very strong result as it means that for every given partition ofX , the structure of
the operators is preserved in the limit process.

Theorem 3 (Structure of the limit operators) LetX = ∪k
i=1

Xi be a partition of the data
space. LetLij,n be the sub-matrices ofLn introduced above,Uij : C(Xj) → C(Xi) the
restrictions ofU corresponding to the setsXi andXj , andU ′

ij,n and U ′
ij the analogous

quantities for the normalized case. Then under the general assumptions,1

nLij,n converges
compactly toUij a.s. andL′

ij,n converges compactly toU ′
ij a.s.

With this result it is then possible to give a first answer on the question how the limit
partitions look like. In Meila and Shi (2001) it has been established that normalized spectral
clustering tries to find a partition such that a random walk on the sample points tends to
stay within each of the partition setsXi instead of jumping between them. With the help
of Theorem 3, the same can now be said for the normalized limit partition, and this can
also be extended to the unnormalized case. The operatorsU ′ andU can be interpreted as
diffusion operators on the data space. The limit clusterings try to find a partition such that
the diffusion tends to stay within the setsXi instead of jumping between them. In particular,
the limit partition segments the data space into sets such that the similarity within the sets
is high and the similarity between the sets is low, which intuitively is what clustering is
supposed to do.

4 Mathematical details

In this section we want to explain the general constructions and steps that need to be
taken to prove Theorems 1, 2, and 3. However, as the proofs are rather technical we only
present proof sketches that convey the overall strategy. Detailed proofs can be found in von
Luxburg (2004) where all proofs are spelled out in full length. Moreover, we will focus on
the proof of Theorem 2 as the other results can be proved similarly.

To be able to define convergence of linear operators, all operators have to act on the same
space. As this is not the case for the matricesLn for different n, for eachLn we will
construct a related operatorUn on the spaceC(X ) which will be used instead ofLn. In
Step 2 we show that the interesting eigenvalues and eigenvectors of1

nLn and Un are in a
one-to-one relationship. Then we will prove that theUn converge in a strong sense to some
limit operatorU on C(X ) in Step 3. As we can show in Step 4, this convergence implies
the convergence of eigenvalues and eigenvectors ofUn. Finally, assembling the parts will
finish the proof of Theorem 2.



Step 1: Construction of the operatorsUn on C(X ).

We first define the empirical and true degree functions inC(X ) as

dn(x) :=

∫

s(x, y)dPn(y) and d(x) :=

∫

s(x, y)dP (y).

Corresponding to the matricesDn andKn we introduce the following multiplication and
integral operators onC(X ):

Mdn
f(x) := dn(x)f(x) and Mdf(x) := d(x)f(x)

Snf(x) :=

∫

s(x, y)f(y)dPn(y) and Sf(x) :=

∫

s(x, y)f(y)dP (y).

Note thatdn(Xi) = 1

ndi, and for f ∈ C(X ) and v := (f(X1), ..., f(Xn))′ it holds
that 1

n (Dnv)i = Mdn
f(Xi) and 1

n (Knv)i = Snf(Xi). Hence the functiondn and the
operatorsMdn

andSn are the counterparts of the discrete degrees1

ndi and the matrices
1

nDn and 1

nKn. The scaling factor1/n comes from the hidden1/n-factor in the empirical
distributionPn. The natural pointwise limits ofdn, Mdn

, andSn for n → ∞ are given
by d, Md, andS. The operators corresponding to the unnormalized Laplacians1

nLn =
1

n (Dn − Kn) and its limit operator are

Unf(x) := Mdn
f(x) − Snf(x) and Uf(x) := Mdf(x) − Sf(x).

Step 2: Relations betweenσ( 1

n
Ln) and σ(Un).

Proposition 4 (Spectral properties) 1. The spectrum ofUn consists ofrg(dn), plus some
isolated eigenvalues with finite multiplicity. The same holds forU andrg(d).

2. If f ∈ C(X ) is an eigenfunction ofUn with arbitrary eigenvalueλ, then the vector
v ∈ IRn with vi = f(Xi) is an eigenvector of the matrix1nLn with eigenvalueλ.

3. If v is an eigenvector of the matrix1nLn with eigenvalueλ 6∈ rg(dn), then the
functionf(x) = 1

n (
∑

j s(x,Xj)vj)/(dn(x) − λ) is the unique eigenfunction ofUn with
eigenvalueλ satisfyingf(Xi) = vi.

Proof. It is well-known that the (essential) spectrum of a multiplication operator coincides
with the range of the multiplier function. Moreover, the spectrum of a sum of a bounded
operator with a compact operator contains the essential spectrum of the bounded operator.
Additionally, it can only contain some isolated eigenvalues with finite multiplicity (e.g.,
Theorem IV.5.35 in Kato, 1966). The proofs of the other parts of this proposition can be
obtained by elementary shuffling of eigenvalue equations and will be skipped. ,

Step 3: Convergence ofUn to U .

Dealing with the randomness. Recall that the operatorsUn are random operators as
they depend on the given sample pointsX1, ..., Xn via the empirical distributionPn. One
important tool to cope with this randomness will be the following proposition:

Proposition 5 (Glivenko-Cantelli class) Let (X , d) be a compact metric space ands :
X×X → IR continuous. ThenF := {s(x, ·); x ∈ X} is a Glivenko-Cantelli class, that is
supx∈X |

∫

s(x, y)dPn(y) −
∫

s(x, y)dP (y)| → 0 almost surely.

Proof. This proposition follows from Theorem 2.4.1. of v. d. Vaart and Wellner (1996).,

Note that one direct consequence of this proposition is that‖dn − d‖∞ → 0 a.s.



Types of convergence.LetE be an arbitrary Banach space andB its unit ball. A sequence
(Sn)n of linear operators onE is calledcollectively compactif the set

⋃

n SnB is relatively
compact inE (with respect to the norm topology). A sequence of operatorsconverges
collectively compactlyif it converges pointwise and if there exists someN ∈ IN such that
the operators(Sn − S)n>N are collectively compact. A sequence of operatorsconverges
compactlyif it converges pointwise and if for every sequence(xn)n in B, the sequence
(S−Sn)xn is relatively compact. See Anselone (1971) and Chatelin (1983) for background
reading. A sequence(xn)n in E converges up to a change of signto x ∈ E if there exists
a sequence(an)n of signsan ∈ {−1,+1} such that the sequence(anxn)n converges tox.

Proposition 6 (Un converges compactly toU a.s.) LetX be a compact metric space and
s : X×X → IR continuous. ThenUn converges toU compactly a.s.

Proof. (a)Sn converges toS collectively compactly a.s.With the help of the Glivenko-
Cantelli property in Proposition 5 it is easy to see thatSn converges toS pointwise, that
is ‖Snf − Sf‖∞ → 0 a.s. for allf ∈ C(X ). As the limit operatorS is compact, to
prove that(Sn − S)n are collectively compact a.s. it is enough to prove that(Sn)n are
collectively compact a.s. This can be done by the Arzela-Ascoli theorem.

(b) Mdn
converges toMd in operator norm a.s.This is a direct consequence of the

Glivenko-Cantelli properties of Proposition 5.
(c) Un = Sn − Mdn

converges toU = S − Md compactly a.s. Both operator
norm convergence and collectively compact convergence imply compact convergence
(cf. Proposition 3.18 of Chatelin, 1983). Moreover, it is easy to see that the sum of two
compactly converging operators converges compactly. ,

Step 4: Convergence of the eigenfunctions ofUn to those ofU .

It is a result of perturbation theory (see the comprehensive treatment in Chatelin, 1983,
especially Section 5.1) that compact convergence of operators implies the convergence of
eigenvalues and spectral projections in the following way. Ifλ is an isolated eigenvalue in
σ(U) with finite multiplicity, then there exists a sequenceλn ∈ σ(Un) of isolated eigen-
values with finite multiplicity such thatλn → λ. If the first r eigenvalues ofT have
multiplicity 1, then the same holds for the firstr eigenvalues ofTn for sufficiently large
n, and thei-th eigenvalues ofTn converge to thei-th eigenvalue ofT . The corresponding
eigenvectors converge up to a change of sign. If the multiplicity of the eigenvalues is larger
than 1 but finite, then the corresponding eigenspaces converge. Note that for eigenvalues
which are not isolated in the spectrum, convergence cannot be asserted, and the same holds
for the corresponding eigenvectors (e.g., Section IV.3 of Kato, 1966).
In our case, by Proposition 4 we know that the spectrum ofU consists of the whole in-
terval rg(d), plus eventually some isolated eigenvalues. Hence an eigenvalueλ ∈ σ(U)
is isolated in the spectrum iffλ 6∈ rg(d) holds, in which case convergence holds as stated
above.

Step 5: Convergence of unnormalized spectral clustering.

Now we can to put together the different parts. In the first two steps we transferred the
problem of the convergence of the eigenvectors of1

nLn to the convergence of eigenfunc-
tions of Un. In Step 3 we showed thatUn converges compactly to the limit operatorU ,
which according to Step 4 implies the convergence of the eigenfunctions ofUn. In terms
of the eigenvectors of1nLn this means the following: ifλ denotes thej-th eigenvalue
of U with eigenfunctionf ∈ C(X ) andλn the j-th eigenvalue of1nLn with eigenvec-
tor vn = (vn,1, ..., vn,n)′, then there exists a sequence of signsai ∈ {−1,+1} such that
supi=1,...,n |aivn,i − f(Xi)| → 0 a.s. As spectral clustering is constructed from the co-
ordinates of the eigenvectors, this leads to the convergence of spectral clustering in the
unnormalized case. This completes the proof of Theorem 2. ,



The proof for Theorem 1 can be obtained in a very similar way. Here the limit operator is

U ′f(x) := (I − S′)f(x) := f(x) −

∫

(s(x, y)/
√

d(x)d(y) )f(y)dP (y).

The main difference to the unnormalized case is that the operatorMd in U gets replaced by
the identity operatorI in U ′. This simplifies matters as one can easily express the spectrum
of (I − S′) via the spectrum of the compact operatorS′. From a different point of view,
consider the identity operator as the operator of multiplication by the constant one function
1. Its range is the single pointrg(1) = {1}, and hence the critical intervalrg(d) ⊂ σ(U)
shrinks to the point1 ∈ σ(U ′), which in general is a non-isolated eigenvalue with infinite
multiplicity.

Finally, note that it is also possible to prove more general versions of Theorems 1 and 2
where the eigenvalues have finite multiplicity larger than 1. Instead of the convergence of
the eigenvectors we then obtain the convergence of the projections on the eigenspaces.

The proof of Theorem 3 works as the ones of the other two theorems. The exact definitions
of the operators considered in this case are

U ′
ij : C(Xj) → C(Xi), δijfi(x) −

∫

(sij(x, y)/
√

di(x)dj(y) )fj(y)dPj(y)

Uij : C(Xj) → C(Xi), Uijf(x) = δijdi(x)fi(x) −

∫

sij(x, y)fj(y)dPj(y)

wheredi, fi, Pi, andsij denote the restrictions of the functions toXi andXi×Xj , respec-
tively, andδij is 1 if i = j and 0 otherwise. For the diffusion interpretation, note that if
there exists an ideal partition of the data space (that is,s(xi, xj) = 0 for xi, xj in different
setsXi andXj), then the off-diagonal operatorsU ′

ij andUij with i 6= j vanish, and the
first k eigenvectors ofU ′ andU can be reconstructed by the piecewise constant eigenvec-
tors of the diagonal operatorsU ′

ii andUii. In this situation, spectral clustering recovers
the ideal clustering. If there exists no ideal clustering, but there exists a partition such that
the off-diagonal operators are “small” and the diagonal operators are “large”, then it can
be seen by perturbation theory arguments that spectral clustering will find such a partition.
The off-diagonal operators can be interpreted as diffusion operators between different clus-
ters (note that even in the unnormalized case, the multiplication operator only appears in
the diagonal operators). Hence, constructing a clustering with small off-diagonal operators
corresponds to a partition such that few diffusion between the clusters takes place.

Finally, we want to construct an example where the second eigenvalue ofU satisfiesλ ∈
rg(d). LetX = [1, 2] ⊂ IR, s(x, y) := xy, andp a piecewise constant probability density
onX with p(x) = c if 4/3 ≤ x < 5/3 andp(x) = (3 − c)/2 otherwise, for some fixed
constantc ∈ [0, 3] (e.g., for smallc this density has two clearly separated high density
regions). The degree function in this case isd(x) = 1.5x (independently ofc) and has
range[1.5, 3] onX . We can see that an eigenfunction ofU for eigenvalueλ 6∈ rg(d) has
the formf(x) = βx/(3x − λ), where the equationβ =

∫

x2/(3x − λ)p(x)dx has to
be satisfied. This means thatλ 6∈ rg(d) is an eigenvalue ofU iff the equationg(λ) :=
∫ 2

1
x2/(3x − λ)p(x)dx

!
= 1 is satisfied. For our simple density functionp, this integral

can be solved analytically. It can then been seen thatg(λ) = 1 is only satisfied forλ = 0,
hence the only eigenvalue outside ofrg(d) is the trivial eigenvalue 0.

Note that in applications of spectral clustering, we do not know the limit operatorU and
hence cannot test whether its relevant eigenvalues are in its essential spectrumrg(d) or
not. If, for some special reason, one really wants to use unnormalized spectral clustering,
one should at least estimate the critical regionrg(d) by [mini di/n,maxi di/n] and check
whether the relevant eigenvalues of1

nLn are inside or close to this interval or not. This ob-
servation then gives an indication whether the results obtained can considered to be reliable
or not. However, this observation is not a valid statistical test.



5 Conclusions

We have shown that under standard assumptions, normalized spectral clustering always
converges to a limit partition of the whole data space which depends only on the probability
distributionP and the similarity functions. For unnormalized spectral clustering, this can
only be guaranteed under the strong additional assumption that the first eigenvalues of the
Laplacian do not fall inside the range of the degree function. As shown by our example,
this condition has to be taken seriously.

Consistency results are a basic sanity check for behavior of statistical learning algorithms.
Algorithms which do not converge cannot be expected to exhibit reliable results on finite
samples. Therefore, in the light of our theoretical analysis we assert that the normalized
version of spectral clustering should be preferred in practice. This suggestion also extends
to other applications of graph Laplacians including semi-supervised learning.
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