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Abstract

We propose a gossip-based distributed algorithm for Gaussian mixture
learning, Newscast EM. The algorithm operates on network topologies
where each node observes a local quantity and can communicate with
other nodes in an arbitrary point-to-point fashion. The main difference
between Newscast EM and the standard EM algorithm is that the M-step
in our case is implemented in a decentralized manner: (random) pairs
of nodes repeatedly exchange their local parameter estimates and com-
bine them by (weighted) averaging. We provide theoretical evidence and
demonstrate experimentally that, under this protocol, nodes converge ex-
ponentially fast to the correct estimates in each M-step of the EM algo-
rithm.

1 Introduction

Advances in network technology, like peer-to-peer networks on the Internet or sensor net-
works, have highlighted the need for efficient ways to deal with large amounts of data that
are distributed over a set of nodes. Examples are financial data reported on the Internet,
weather data observed by a set of sensors, etc. In particular, in many data mining ap-
plications we are interested in learning a global model from such data, like a probability
distribution or a clustering of the data, without first transferring all the data to a central
repository. Ideally, we would like to have a fully decentralized algorithm that computes
and disseminates aggregates of the data, with minimal processing and communication re-
quirements and good fault-tolerant behavior.

A recent development in distributed systems technology is the use of gossip-based models
of computation [1, 2, 3]. Roughly, in a gossip-based protocol each node repeatedly con-
tacts some other node at random and the two nodes exchange information. Gossip-based
protocols are very simple to implement, while they enjoy strong performance guarantees
as a result of randomization. Their use in data mining and machine learning applications is
currently finding inroads [4, 5].

In this paper we propose a gossip-based, fully decentralized implementation of the
Expectation-Maximization (EM) algorithm for Gaussian mixture learning [6]. Our algo-
rithm, which we call ‘Newscast EM’, assumes a set of data {xi} that are drawn indepen-
dently from a common Gaussian mixture and are distributed over the nodes of a network
(one data point per node). Newscast EM utilizes a gossip-based protocol in its M-step to



learn a global Gaussian mixture model p(x) from the data. The main idea is to perform the
M-step in a number of cycles. Each node starts with a local estimate of the model param-
eters. Then, in every cycle, each node contacts some other node that is chosen at random
from a list of known nodes, and the two nodes replace their local model estimates by their
(weighted) averages. As we show below, under such a protocol the (erroneous) local mod-
els of the individual nodes converge exponentially fast to the (correct) global model in each
M-step of the algorithm.

Our approach is fundamentally different from other distributed exact implementations of
the EM algorithm that resort on global broadcasting [7] or routing trees [8]. In the latter,
for instance, data sufficient statistics are propagated through a spanning tree in the network,
combined with an incremental learning scheme as in [9]. A disadvantage of that approach
is that only one node is carrying out computations at any time step, whereas in Newscast
EM all nodes are running the same protocol in parallel. This results in a batch M-step that
has average runtime at most logarithmic in the number of nodes, as we will see next.

2 Gaussian mixtures and the EM algorithm

A k-component Gaussian mixture for a random vector x ∈ IRd is defined as the convex
combination

p(x) =

k
∑

s=1

πsp(x|s) (1)

of k Gaussian densities p(x|s) = (2π)−d/2|Cs|−1/2 exp[−(x − ms)
>C−1

s (x − ms)/2],
each parameterized by its mean ms and covariance matrix Cs. The components of the
mixture are indexed by the random variable s that takes values from 1 to k, and πs = p(s)
defines a discrete prior distribution over the components. Given a set {x1, . . . , xn} of
independent and identically distributed samples from p(x), the learning task is to estimate
the parameter vector θ = {πs,ms, Cs}k

s=1 of the k components that maximizes the log-
likelihood L =

∑n
i=1 log p(xi; θ). Throughout we assume that the likelihood function is

bounded from above (e.g., by placing appropriate bounds on the components covariance
matrices).

Maximization of the data log-likelihood L can be carried out by the EM algorithm [6]
which can be seen as iteratively maximizing a lower bound of L [9]. This bound F is
a function of the current mixture parameters θ and a set of ‘responsibility’ distributions
{qi(s)}, i = 1, . . . , n, where each qi(s) corresponds to a data point xi and defines an
arbitrary discrete distribution over s. This lower bound is given by:

F =
n

∑

i=1

k
∑

s=1

qi(s)
[

log p(xi, s; θ) − log qi(s)
]

. (2)

In the E-step of the EM algorithm, the responsibility qi(s) for each point xi is set to the
Bayes posterior p(s|xi) given the parameters found in the previous step. In the M-step we
solve for the unknown parameters of the mixture by maximizing F for fixed qi(s). This
yields the following updates:

πs =

∑n
i=1 qi(s)

n
, ms =

∑n
i=1 qi(s)xi

nπs
, Cs =

∑n
i=1 qi(s)xix

>
i

nπs
−msm

>
s . (3)

Note that the main operation of the M-step is averaging: πs is the average of qi(s), ms

is the average of products qi(s)xi (divided by πs), and the covariance matrix Cs is the
average of matrices qi(s)xix

>
i (divided by πs and decreased by msm

>
s ). This observation

is essential for the proposed algorithm, as we will shortly see.



3 Newscast computing and averaging

The proposed distributed EM algorithm for Gaussian mixture learning relies on the use of
the Newscast protocol for distributed computing [3]. Newscast is a gossip-based protocol
that applies to networks where arbitrary point-to-point communication between nodes is
possible, and it involves repeated data exchange between nodes using randomization: with
constant frequency each node contacts some other node at random, and the two nodes
exchange application-specific data as well as caches with addresses of other nodes. The
protocol is very robust, scalable, and simple to implement—its Java implementation is
only a few kBytes of code and can run on small network-enabled computing devices such
as mobile phones, PDAs, or sensors.

As with other gossip-based protocols [2], Newscast can be used for computing the mean
of a set of values that are distributed over a network. Suppose that values v1, . . . , vn are
stored in the nodes of a network, one value per node. Moreover suppose that each node
knows the addresses of all other nodes. To compute µ = 1

n

∑n
i=1 vi, each node i initially

sets µi = vi as its local estimate of µ, and then runs the following protocol for a number of
cycles:

Uniform Newscast (for node i)

1. Contact a node j = f(i) that is chosen uniformly at random from 1, . . . , n.
2. Nodes i and j update their estimates as follows: µ′

i = µ′
j = (µi + µj)/2.

For the purpose of analysis we will assume that in each cycle every node initiates a single
contact (but in practice the algorithm can be fully asynchronous). Note that the mean of
the local estimates {µi} is always the correct mean µ, while for their variance holds:

Lemma 1. In each cycle of uniform Newscast the variance of the local estimates drops on
the average by factor λ, with λ ≤ 1

2
√

e
.

Proof.1 Let Φt =
∑n

i=1(µi − µ)2 be the unnormalized variance of the local estimates µi

at cycle t. Suppose, without loss of generality, that within cycle t nodes initiate contacts in
the order 1, 2, . . . , n. The new variance after node’s 1 contact is:

Φ1 = Φt − (µ1 − µ)2 − (µf(1) − µ)2 + 2
(µ1 + µf(1)

2
− µ

)2

(4)

= Φt −
1

2
(µ1 − µ)2 − 1

2
(µf(1) − µ)2 + (µ1 − µ)(µf(1) − µ). (5)

Taking expectation over f , and using the fact that P [f(i) = j] = 1
n for all i and j, gives:

E[Φ1|Φt = φ] = φ− 1

2
(µ1 −µ)2 − 1

2n

n
∑

j=1

(µj −µ)2 =
(

1− 1

2n

)

φ− 1

2
(µ1 −µ)2. (6)

After n such exchanges, the variance Φt+1 is on the average:

E[Φt+1|Φt = φ] =
(

1 − 1

2n

)n

φ − 1

2

n
∑

i=1

(

1 − 1

2n

)n−i

(µi − µ)2. (7)

Bounding the term (1 − 1
2n )n−i by (1 − 1

2n )n finally gives:

E[Φt+1|Φt = φ] ≤ 1

2

(

1 − 1

2n

)n

φ ≤ φ

2
√

e
. (8)

1See [3] for an alternative proof of the same bound.



Thus after t cycles of uniform Newscast, the original variance φ0 of the local estimates is
reduced on the average to φt ≤ φ0/(2

√
e)t. The fact that the variance drops at an exponen-

tial rate means that the nodes learn the correct average very fast. Indeed, using Chebyshev’s
inequality Pt[|µi − µ| ≥ ε] ≤ φt/(nε2) we see that for any ε > 0, the probability that
some node makes an estimation error larger than ε is dropping exponentially fast with the
number of cycles t. In particular, we can derive a bound on the number of cycles that are
needed in order to guarantee with high probability that all nodes know the correct answer
with some specific accuracy:

Theorem 1. With probability 1− δ, after d0.581(log n+2 log σ +2 log 1
ε +log 1

δ )e cycles
of uniform Newscast holds maxi |µi − µ| ≤ ε, for any ε > 0 and data variance σ2.

Proof. Using Lemma 1 and the fact that φ0 = nσ2, we obtain E[Φt] ≤ nσ2/(2
√

e)t.
Setting τ = log(nσ2

ε2δ )/ log(2
√

e) we obtain E[Φτ ] ≤ ε2δ. Using Markov inequality, with
probability at least 1− δ holds Φτ ≤ ε2. Therefore, since Φτ is the sum of local terms, for
each of them must hold |µi −µ| ≤ ε. It is straightforward to show by induction over τ that
the same inequality will hold for any time τ ′ > τ .

For example, for unit-variance data and a network with n = 104 nodes we need 49 cycles
to guarantee with probability 95% that each node is within 10−10 from the correct answer.

Note that in uniform Newscast, each node in the network is assumed to know the addresses
of all other nodes, and therefore can choose in each cycle one node uniformly at random
to exchange data with. In practice, however, each node can only have a limited cache of
addresses of other nodes. In this case, the averaging algorithm is modified as follows:

Non-uniform Newscast (for node i)

1. Contact a node j = f(i) that is appropriately chosen from i’s local cache.
2. Nodes i and j update their estimates as follows: µ′

i = µ′
j = (µi + µj)/2.

3. Nodes i and j update their caches appropriately.

Step 3 implements a ‘membership management’ schedule which effectively defines a dy-
namically changing random graph topology over the network. In our experiments we
adopted the protocol of [10] which roughly operates as follows. Each entry k in node’s i
cache contains an ‘age’ attribute that indicates the number of cycles that have been elapsed
since node k created that entry. In step 1 above, node i contacts the node j with the largest
age from i’s cache, and increases by one the age of all other entries in i’s cache. Then
node i exchanges estimates with node j as in step 2. In step 3, both nodes i and j select a
random subset of their cache entries and mutually exchange them, filling empty slots and
discarding self-pointers and duplicates. Finally node i creates an entry with i’s address in
it and age zero, which is added in j’s cache. The resulting protocol is particularly effective
and, as we show in the experiments below, in some cases it even outperforms the uniform
Newscast. We refer to [10] for more details.

4 The Newscast EM algorithm

Newscast EM (NEM) is a gossip-based distributed implementation of the EM algorithm for
Gaussian mixture learning, that applies to the following setting. We are given a set of data
{xi} that are distributed over the nodes of a network (one data point per node). The data
are assumed independent samples from a common k-component Gaussian mixture p(x)
with (unknown) parameters θ = {πs,ms, Cs}k

s=1. The task is to learn the parameters of
the mixture with maximum likelihood in a decentralized manner: that is, all learning steps



should be performed locally at the nodes, and they should involve as little communication
as possible.

The NEM algorithm is a direct application of the averaging protocol of Section 3 for esti-
mating the parameters θ of p(x) using the EM updates (3). The E-step of NEM is identical
to the E-step of the standard EM algorithm, and it can be performed by all nodes in par-
allel. The novel characteristic of NEM is the M-step which is implemented as a sequence
of gossip-based cycles: At the beginning of each M-step, each node i starts with a local
estimate θi of the ‘correct’ parameter vector θ (correct according to EM and for the current
EM iteration). Then, in every cycle, each node contacts some other node at random, and
the two nodes replace their local estimates θi by their (weighted) averages. At the end of
the M-step each node has converged (within machine precision) to the correct parameter θ.

To simplify notation, we will denote by θi = {πsi,msi, C̃si} the local estimates of node i

for the parameters of component s at any point of the algorithm. The parameter C̃si is
defined such that Csi = C̃si − msim

>
si. The complete algorithm, which runs identically

and in parallel for each node, is as follows:

Newscast EM (for node i)

1. Initialization. Set qi(s) to some random positive value and then normalize all qi(s) to
sum to 1 over all s.

2. M-step. Initialize i’s local estimates for each component s as follows: πsi = qi(s),
msi = xi, C̃si = xix

>
i . Then repeat for τ cycles:

a. Contact a node j = f(i) from i’s local cache.
b. Nodes i and j update their local estimates for each component s as follows:

π′
si = π′

sj =
πsi + πsj

2
, (9)

m′
si = m′

sj =
πsimsi + πsjmsj

πsi + πsj
, (10)

C̃ ′
si = C̃ ′

sj =
πsiC̃si + πsjC̃sj

πsi + πsj
. (11)

c. Nodes i and j update their caches appropriately.

3. E-step. Compute new responsibilities qi(s) = p(s|xi) for each component s using the
M-step estimates πsi, msi, and Csi = C̃si − msim

>
si.

4. Loop. Go to step 2, unless a stopping criterion is satisfied that involves the parameter
estimates themselves or the energy F .2

A few observations about the algorithm are in order. First note that both the initialization
of the algorithm (step 1) as well as the E-step are completely local to each node. Similarly,
a stopping criterion involving the parameter estimates can be implemented locally if each
node caches its estimates from the previous EM-iteration. The M-step involves a total of
k[1 + d + d(d + 1)/2] averages, for each one of the k components and for dimensional-
ity d, which are computed with the Newscast protocol. Given that all nodes agree on the
number τ of Newscast cycles in the M-step, and assuming that τ is large enough to guar-
antee convergence to the correct parameter estimates, the complete NEM algorithm can be
performed identically and in parallel by all nodes in the network.

It is easy to see that at any cycle of an M-step, and for any component s, the weighted

2Note that F is a sum of local terms, and thus it can also be computed using the same protocol.



averages over all nodes of the local estimates are always the EM-correct estimates, i.e.,
∑n

i=1 πsimsi
∑n

i=1 πsi
= ms (12)

and similarly for the C̃si. Moreover, note that the weighted averages of the msi in (10)
and the C̃si in (11), with weights given by (9), can be written as unweighted averages of
the corresponding products πsimsi and πsiC̃si. In other words, each local estimate can be
written as the ratio of two local estimates that converge to the correct values at the same
exponential rate (as shown in the previous section). The above observations establish the
following:

Theorem 2. In every M-step of Newscast EM, each node converges exponentially fast to
the correct parameter estimates for each component of the mixture.

Similarly, the number of cycles τ for each M-step can be chosen according to Theorem 1.
However, note that in every M-step each node has to wait τ cycles before its local estimates
have converged, and only then can it use these estimates in a new next E-step. We describe
here a modification of NEM that allows a node to run a local E-step before its M-step has
converged. This ‘partial’ NEM algorithm is based on the following ‘self-correction’ idea:
instead of waiting until the M-step converges, after a small number of cycles each node runs
a local E-step, adjusts its responsibilities, and propagates appropriate corrections through
the network.

Such a scheme additionally requires that each node caches its responsibilities from the
previous E-step, denoted by q̃i(s). The only modification is in the initialization of the M-
step: instead of fully resetting the local estimates as in step 2 above, a node makes the
following corrections to its current estimates πsi,msi, C̃si for each component s:

π′
si = πsi + qi(s) − q̃i(s), (13)

m′
si = {msiπsi + xi[qi(s) − q̃i(s)]}/π′

si, (14)

C̃ ′
si = {C̃siπsi + xix

>
i [qi(s) − q̃i(s)]}/π′

si. (15)

After these corrections, the Newscast averaging protocol is executed for a number of cy-
cles (smaller than the number τ of the ‘full’ NEM). These corrections may increase the
variance of the local estimates, but in most cases the corresponding increase of variance is
relatively small. This results in speed-ups (often as large as 10-fold), however guaranteed
convergence is hard to establish.3

5 Experiments

To get an insight into the behavior of the presented algorithms we ran several experiments
using a Newscast simulator.4 In Fig. 1 we demonstrate the the performance of uniform
and non-uniform Newscast in typical averaging tasks involving zero-mean unit-variance
data. In Fig. 1(left) we plot the variance reduction rate λ (mean and one standard deviation
for 50 runs) as a function of the number of cycles, for averaging problems involving n =
105 data. Note that in uniform Newscast the observed rate is always below the derived
bound 1/(2

√
e) ≈ 0.303 from Lemma 1. Moreover note that in non-uniform Newscast the

variance drops faster than in uniform Newscast. This is due to the fact that the dynamic
cache exchange scheme of [10] results in in-degree network distributions that are very
peaked around the cache size. In practice this means that on the average each node is

3This would require, for instance, that individual nodes have estimates of the total variance over
the network, which is not obvious how it can be done.

4Available from http://www.cs.vu.nl/˜steen/globesoul/sim.tgz
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Figure 1: (Left) Variance reduction rate of uniform and non-uniform Newscast, in aver-
aging tasks involving n = 105 nodes. (Right) Number of cycles to achieve convergence
within ε = 10−10 for unit-variance datasets of various sizes.

equally often contacted to by other nodes in each cycle of the protocol. We also observed
that the variance reduction rate is on the average unaffected by the network size, while
larger networks result in smaller deviations. For n = 8 ∗ 105, for instance, the standard
deviation is half the one plotted above.

In Fig. 1(right) we plot the number of cycles that are required to achieve model accuracy at
all nodes within ε = 10−10 as a function of the network size. Note that all observed quan-
tities are below the derived bound of Theorem 1, while non-uniform Newscast performs
slightly better than uniform Newscast.

We also ran experiments involving synthetic data drawn from Gaussian mixtures of differ-
ent number of data points, where we observed results essentially identical to those obtained
by the standard (centralized) EM. We also performed some experiments with the ‘partial’
NEM, where it turned out that in most cases we could obtain the same model accuracy with
a much smaller number of cycles (5–10 times than the ‘full’ NEM), but in some cases the
algorithm did not converge.

6 Summary and extensions

We presented Newscast EM, a distributed gossip-based implementation of the EM algo-
rithm for learning Gaussian mixture models. Newscast EM applies on networks where
each one of a (large) number of nodes observes a local quantity, and can communicate with
other nodes in a point-to-point fashion. The algorithm utilizes a gossip-based protocol in
its M-step to learn a global Gaussian mixture model from the data: each node starts with
a local estimate of the parameters of the mixture and then, for a number of cycles till con-
vergence, pairs of nodes repeatedly exchange their local parameter estimates and combine
them by (weighted) averaging. Newscast EM implements a batch M-step that has aver-
age runtime logarithmic in the network size. We believe that gossip-based protocols like
Newscast can be used in several other algorithms that learn models from distributed data.

Several extensions of the algorithm are possible. Here we have assumed that each node
in the network observes one data point. We can easily generalize this to situations where
each node observes (and stores) a collection of points, like in [8]. On the other hand, if the
locally observed data are too many, one may consider storing only some sufficient statis-
tics of these data locally, and appropriately bound the energy F in each iteration to get a
convergent EM algorithm [11]. Another interesting extension is to replace the averaging



step 2 of uniform and non-uniform Newscast with weighted averaging (for some choice of
weights), and study the variance reduction rate in this case. Another interesting problem is
when the E-step cannot be performed locally at a node but it requires distributing some in-
formation over the network. This could be the case, for instance, when each node observes
only a few elements of a vector-valued quantity while, for instance, all nodes together ob-
serve the complete sample. We note that if the component models factorize, several useful
quantities can be computed by averaging in the log domain. Finally, it would be interesting
to investigate the applicability of the Newscast protocol in problems involving distributed
inference/learning in more general graphical models [12].
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