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Abstract

Bayesian Regularization and Nonnegative Deconvolution (BRAND) is
proposed for estimating time delays of acoustic signals in reverberant
environments. Sparsity of the nonnegative filter coefficients is enforced
using anL1-norm regularization. A probabilistic generative model is
used to simultaneously estimate the regularization parameters and filter
coefficients from the signal data. Iterative update rules are derived under
a Bayesian framework using the Expectation-Maximization procedure.
The resulting time delay estimation algorithm is demonstrated on noisy
acoustic data.

1 Introduction

Estimating the time difference of arrival is crucial for binaural acoustic sound source
localization[1]. A typical scenario is depicted in Fig. 1 where the azimuthal angleφ to
the sound source is determined by the difference in direct propagation times of the sound
to the two microphones. The standard signal processing algorithm for determining the
time delay between two signalss(t) andx(t) relies upon computing the cross-correlation
function[2]: C(∆t) =

∫
dt x(t)s(t − ∆t) and determining the time delay∆t that maxi-

mizes the cross-correlation. In the presence of uncorrelated white noise, this procedure is
equivalent to the optimal matched filter for detection of the time delayed signal.

However, a typical room environment is reverberant and the measured signal is contami-
nated with echoes from multiple paths as shown in Fig. 1. In this case, the cross-correlation
and related algorithms may not be optimal for estimating the time delays. An alternative
approach would be to estimate the multiple time delays as a linear deconvolution problem:

min
α
‖x(t)−

∑

i

αis(t−∆ti)‖2 (1)

Unfortunately, this deconvolution can be ill-conditioned resulting in very noisy solutions
for the coefficientsα. Recently, we proposed incorporating nonnegativity constraintsα ≥
0 in the deconvolution to overcome the ill-conditioned linear solutions [3]. The use of
these constraints is justified by acoustic models that describe the theoretical room impulse
response with nonnegative filter coeffients [4]. The resulting optimization problem can be
written as the nonnegative quadratic programming problem:

min
α≥0

‖x− Sα‖2 (2)
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Figure1: The typical scenario of reverberant signal.x2(t) comes from the direct path (∆t2) and
echo paths(∆tE).
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Figure2: Time delay estimation of a speech signal with a) cross-correlation, b) phase alignment
transform, c) linear deconvolution, d) nonnegative deconvolution. The observed signalx(t) = s(t−
Ts) + 0.5s(t− 8.75Ts) contains an additional time-delayed echo.Ts is the sampling interval.

wherex = {x(t1) x(t2) . . . x(tN )}T is a N × 1 data vector,S = {s(t − ∆t1) s(t −
∆t2) . . . s(t − ∆tM )} is anN × M matrix, andα is a M × 1 vector of nonnegative
coefficients.

Figure 2 compares the performance of cross-correlation, phase alignment transform(a gen-
eralized cross-correlation algorithm), linear deconvolution, and nonnegative deconvolution
for estimating the time delays in a clean speech signal containing an echo. From the struc-
ture of the estimated coefficients, it is clear that nonnegative deconvolution can successfully
discover the structure of the time delays present in the signal. However, in the presence of
large background noise, it may be necessary to regularize the nonnegative quadratic opti-
mization to prevent overfitting. In this case, we propose using anL1-norm regularization
to favor sparse solutions [5]:

min
α≥0

‖x− Sα‖2 + λ̂
∑

i

αi (3)

In this formula, the parameterλ̂ (λ̂ ≥ 0) describes the trade-off between fitting the observed



dataand enforcing sparse solutions. The proper choice of this parameter may be crucial in
obtaining the optimal time delay estimates. In the rest of this manuscript, we introduce a
proper generative model for these regularization parameters and filter coefficients within a
probabilistic Bayesian framework. We show how these parameters can be efficiently deter-
mined using appropriate iterative estimates. We conclude by demonstrating and discussing
the performance of our algorithm on noisy acoustic signals in reverberant environments.

2 Bayesian regularization

Instead of arbitrarily setting values for the regularization parameters, we show how a
Bayesian framework can be used to automatically estimate the correct values from the
data. Bayesian regularization has previously been successfully applied to neural network
learning [6], model selection, and relevance vector machine (RVM) [7]. In these works, the
fitting coefficients are assumed to have Gaussian priors, which lead to anL2-norm regu-
larization. In our model, we useL1-norm sparsity regularization, and Bayesian framework
will be used to optimally determine the appropriate regularization parameters.

Our probabilistic model assumes the observed data signal is generated by convolving the
source signal with a nonnegative filter describing the room impulse response. This signal
is then contaminated by additive Gaussian white noise with zero-mean and covarianceσ2:

P (x|S, α, σ2) =
1

(2πσ2)N/2
exp

(
− 1

2σ2
‖x− Sα‖2

)
. (4)

To enforce sparseness in the filter coefficientsα, an exponential prior distribution is used.
This prior only has support in the nonnegative orthant and the sharpness of the distribution
is given by the regularization parameterλ:

P (α|λ) = λM exp{−λ
M∑

i=1

αi}, α ≥ 0 . (5)

In order to infer the optimal settings of the regularization parametersσ2 andλ, Bayes rule
is used to maximize the posterior distribution:

P (λ, σ2|x,S) =
P (x|λ, σ2,S)P (λ, σ2)

P (x|S)
. (6)

Assumingthat P (λ, σ2) is relatively flat [8], estimatingσ2 andλ is then equivalent to
maximizing the likelihood:

P (x|λ, σ2,S) =
λM

(2πσ2)N/2

∫

α≥0

dα exp[−F (α)] (7)

where

F (α) =
1

2σ2
(x− Sα)T (x− Sα) + λeT α (8)

ande = [1 1 . . . 1]T .

Unfortunately, the integral in Eq. 7 cannot be directly maximized. Previous approaches
to Bayesian regularization have used iterative updates heuristically derived from self-
consistent fixed point equations. In our model, the following iterative update rules for
λ andσ2 can be derived using Expectation-Maximization:

1
λ

←− 1
M

∫

α≥0

dα eT αQ(α) (9)

σ2 ←− 1
N

∫

α≥0

dα (x− Sα)T (x− Sα)Q(α) (10)



wherethe expectations are taken over the distribution

Q(α) =
exp[−F (α)]

Zα
, (11)

with normalizationZα =
∫
α≥0

dα exp[−F (α)]. These updates have guaranteed con-

vergence properties and can be intuitively understood as iteratively reestimatingλ andσ2

based upon appropriate expectations over the current estimate forQ(α).

2.1 Estimation ofαML

The integrals in Eqs. 9–10 are dominated byα ≈ αML where the most likelyαML is
given by:

αML = arg min
α≥0

1
2σ2

(x− Sα)T (x− Sα) + λT α. (12)

This optimization is equivalent to the nonnegative quadratic programming problem in Eq. 3
with λ̂ = λσ2. To efficiently computeαML, we have recently developed two distinct
methods for optimizing Eq. 12.

The first method is based upon a multiplicative update rule for nonnegative quadratic pro-
gramming [9]. We first write the problem in the following form:

min
α≥0

1
2
αT Aα + bT α, (13)

whereA = 1
σ2 ST S, andb = − 1

σ2 ST x.

First, we decompose the matrixA = A+ − A− into its positive and negative components
such that:

A+
ij =

{
Aij if Aij > 0
0 if Aij ≤ 0 A−ij =

{
0 if Aij ≥ 0
−Aij if Aij < 0 (14)

Then the following is an auxiliary function that upper bounds Eq. 13 [9]:

G(α, α̃) = bT α +
1
2

∑

i

(A+α̃)i

α̃i
α2

i −
1
2

∑

i,j

A−ijα̃iα̃j(1 + ln
αiαj

α̃iα̃j
). (15)

Minimizing Eq. 15 yields the following iterative multiplicative rule with guaranteed con-
vergence toαML:

αi ←− αi
−bi +

√
b2
i + 4(A+α)i(A−α)i

2(A+α)i
. (16)

The iterative formula in Eq. 16 is used to efficiently compute a reasonable estimate for
αML from an arbitrary initialization. However, its convergence is similar to other interior
point methods in that small components ofαML will continually decrease but never equal
zero. In order to truly sparsify the solution, we employ an alternative method based upon
the simplex algorithm for linear programming.

Our other optimization method is based upon finding a solutionαML that satistifies the
Karush-Kuhn-Tucker (KKT) conditions for Eq. 13:

Aα + b = β, α ≥ 0, β ≥ 0, αiβi = 0, i = 1, 2, . . . ,M. (17)



By introducing additional artificial variablesa, the KKT conditions can be transformed into
the linear optimizationmin

∑
i ai subject to the constraints:

a ≥ 0 (18)

α ≥ 0 (19)

β ≥ 0 (20)

Aα− β + sign(−b)a = −b (21)

αiβi = 0, i = 1, 2, . . . , M. (22)

The only nonlinear constraint is the productαiβi = 0. However, this can be effectively
implemented in the simplex procedure by modifying the selection of the pivot element
to ensure thatαi and βi are never both in the set of basic variables. With this simple
modification of the simplex algorithm, the optimalαML can be efficiently computed.

2.2 Approximation of Q(α)

Once the most likelyαML has been determined, the simplest approach for estimating the
newλ andσ2 in Eqs. 9–10 is to replaceQ(α) ≈ δ(α − αML) in the integrals. Unfortu-
nately, this simple approximation will causeλ andσ to diverge from bad initial estimates.
To overcome these difficulties, we use a slightly more sophisticated method of estimating
the expectations to properly consider variability in the distributionQ(α).

We first note that the solutionαML of the nonnegative quadratic optimization in Eq. 12
naturally partitions the elements of the vectorα into two distinct subsetsαI andαJ , con-
sisting of componentsi ∈ I such that(αML)i = 0, and componentsj ∈ J such that
(αML)j > 0, respectively. It will then be useful to approximate the distributionQ(α) as
the factored form:

Q(α) ≈ QI(αI)QJ (αJ) (23)

Consider the componentsαJ near the maximum likelihood solutionαML. Among these
components, none of nonnegativity constraints are active, so it is reasonable to approximate
the distributionQJ (αJ) by the unconstrained Gaussian:

QJ(αJ) ∝ exp[−F (αJ |αI = 0)] (24)

This Gaussian distribution has meanαML
J and inverse covariance given by the submatrix

AJJ of A = 1
σ2 ST S.

For the other componentsαI , it is important to consider the nonnegativity constraints, since
αML

I = 0 is on the boundary of the distribution. We can representQI(αI) with the first
two order Tyler expansion:

QI(αI) ∝ exp{−[(
∂F

∂α
)|αML ]TI αI − 1

2
αT

I AIIαI)},

∝ exp[−(AαML + b)T
I αI − 1

2
αT

I AIIαI ]

αI ≥ 0. (25)

QI(αI) is then approximated with factorial exponential distributionQ̂I(αI) so that the
integrals in Eqs. 9–10 can be easily evaluated.

Q̂I(αI) =
∏

i∈I

1
µi

e−αi/µi , αI ≥ 0 (26)

which has support only for nonnegativeαI ≥ 0. The mean-field parametersµ are opti-
mally obtained by minimizing the KL-divergence:

min
µ≥0

∫

αI≥0

dαI Q̂I(αI) ln
Q̂I(αI)
QI(αI)

. (27)



This integral can easily be computed in terms of the parametersµ and yields the minimiza-
tion:

min
µ≥0

−
∑

i∈I

ln µi + b̂T
I µ +

1
2
µT Âµ, (28)

whereb̂I = (AαML + b)I , Â = AII + diag(AII). To solve this minimization problem,
we use an auxiliary function for Eq. 28 similar to the auxiliary function for nonnegative
quadratic programming:

G(µ, µ̃) = −
∑

i∈I

ln µi + b̂T
I µ+

1
2

∑

i∈I

(Â+µ̃)i

µ̃i
µ2

i −
1
2

∑

i,j∈I

Â−ijµ̃iµ̃j(1+ln
µiµj

µ̃iµ̃j
), (29)

whereÂ = Â+−Â− is the decomposition of̂A into its positive and negative components.
Minimization of this auxiliary function yields the following multiplicative update rules for
µi:

µi ←− µi

−b̂i +
√

b̂2
i + 4(Â+µ)i[(Â−µ)i + 1

µi
]

2(Â+µ)i

. (30)

Theseiterations are then guaranteed to converge to the optimal mean-field parameters for
the distributionQI(αI).

Given the factorized approximation̂QI(αI)QJ (αJ), the expectations in Eqs. 9–10 can be
analytically calculated. The mean value ofα under this distribution is given by:

ᾱi =
{

αML
i if i ∈ J

µi if i ∈ I
(31)

and its covarianceC is:

Cij =
{

(AJJ
−1)ij if i, j ∈ J

µ2
i δij otherwise

(32)

The update rules forλ andσ2 are then given by:

λ ←− M∑
i ᾱi

(33)

σ2 ←− 1
N

[(x− Sᾱ)T (x− Sᾱ) + Tr(ST SC)] (34)

To summarize, the complete algorithm consists of the following steps:

1. Initializeλ andσ2.

2. DetermineαML by solving the nonnegative quadratic programming in Eq. 12.

3. Approximate the distributionQ(α) ≈ Q̂I(αI)QJ(αJ) by solving the mean field
equations forµ in Q̂I .

4. Calculate the mean̄α and covarianceC for this distribution.

5. Reestimate regularization parametersλ andσ2 using Eqs. 33–34.

6. Go back to Step 2 until convergence.
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Figure3: Iterative estimation ofλ (M/λ in the figure, indicating the reverberation level) andσ2

whenx(t) is contaminated by background white noise at -5 dB, -20 dB, and -40 dB levels. The
horizontal dotted lines indicate the true levels.

3 Results

We illustrate the performance of our algorithm in estimating the regularization parameters
as well as the nonnegative filter coefficients of a speech source signals(t). The observed
signalx(t) is simulated by a time-delayed version of the source signal mixed with an echo
along with additive Gaussian white noiseη(t):

x(t) = s(t− Ts) + 0.5s(t− 16.5Ts) + η(t). (35)

We compare the results of the algorithm as the noise level is changed. Fig. 3 shows the
convergence of the estimates forλ andσ2 as the noise level is varied between -5 dB and
-40 dB. There is rapid convergence of both parameters even with bad initial estimates. The
resulting value of theσ2 parameter is very close to the true noise level. Additionally, the
estimatedλ parameter is inversely related to the reverberation level of the environment,
given by the sum of the true filter coefficients.

Fig. 4 demonstrates the importance of correctly determining the regularization parameters
in estimating the time delay structure in the presence of noise. Using the Bayesian regu-
larization procedure, the resulting estimate forαML correctly models the direct path time
delay as well as the secondary echo. However, if the regularization parameters are manu-
ally set incorrectly to over-sparsify the solution, the resulting estimates for the time delays
may be quite inaccurate.

4 Discussion

In summary, we propose using a Bayesian framework to automatically regularize nonnega-
tive deconvolutions for estimating time delays in acoustic signals. We present two methods
for efficiently solving the resulting nonnegative quadratic programming problem. We also
derive an iterative algorithm from Expectation-Maximization to estimate the regularization
parameters. We show how these iterative updates can simulataneously estimate the time-
delay structure in the signal, as well as the background noise level and reverberation level
of the room. Our results indicate that the algorithm is able to quickly converge to an optimal
solution, even with bad initial estimates. Preliminary tests with an acoustic robotic platform
indicate that these algorithms can successfully be implemented on a real-time system.
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Figure 4: Estimated time delay structure fromαML with different regularizations: a) Bayesian
regularization, b) manually set regularization. Dotted lines indicate the true positions of the time
delays.

We are currently working to extend the algorithm to the situation where the source signal
needs to also be estimated. In this case, priors for the source signal are used to regularize
the source estimates. These priors are similar to those used for blind source separation. We
are investigating algorithms that can simultaneously estimate the hyperparameters for these
priors in addition to the other parameters within a consistent Bayesian framework.
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