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Abstract

This paper presents a general family of algebraic positive definite simi-
larity functions over spaces of matrices with varying column rank. The
columns can represent local regions in an image (whereby images have
varying number of local parts), images of an image sequence, motion tra-
jectories in a multibody motion, and so forth. The family of set kernels
we derive is based on a group invariant tensor product lifting with param-
eters that can be naturally tuned to provide a cook-book of sorts covering
the possible ”wish lists” from similarity measures over sets of varying
cardinality. We highlight the strengths of our approach by demonstrat-
ing the set kernels for visual recognition of pedestrians using local parts
representations.

1 Introduction

In the area of learning from observations there are two main paths that are often mutually
exclusive: (i) the design of learning algorithms, and (ii) the design of data representations.
The algorithm designers take pride in the fact that their algorithm can generalize well given
straightforward data representations (most notable example is SVM [11]), whereas those
who work on data representations demonstrate often remarkable results with sophisticated
data representations using only straightforward learning algorithms (e.g. [5, 10, 6]). This
dichotomy is probably most emphasized in the area of computer vision, where image under-
standing from observations involve data instances of images or image sequences containing
huge amounts of data. A straightforward representation treating all the measurements as
a single vector, such as the raw pixel data, or a transformed raw-pixel data, places un-
reasonable demands on the learning algorithm. The ”holistic” representations suffer also
from sensitivity to occlusions, invariance to local and global transformations, non-rigidity
of local parts of the object, and so forth.

Practitioners in the area of data representations have long noticed that a collection of local
representations (part-based representations) can be most effective to ameliorate changes of
appearance [5, 10, 6]. The local data representations vary in their sophistication, but share
the same principle where an image corresponds to a collection of points each in a relatively
small dimensional space — instead of a single point in high-dimensional space induced
by holistic representations. In general, the number of points (local parts) per image may
vary and the dimension of each point may vary as well. The local representations tend
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to be robust against occlusions, local and global transformations and preserve the original
resolution of the image (the higher the resolution the more parts are generated per image).

The key for unifying local and holistic representations for inference engines is to design
positive definite similarity functions (a.k.a. kernels) oversets(of vectors) of varying cardi-
nalities. A Support Vector Machine (SVM) [11] can then handle sets of vectors as a single
instance via application of those ”set kernels”. A set kernel would be useful also to other
types of inference engines such as kernel versions of PCA, LDA, CCA, ridge regression and
any algorithm which can be mapped onto inner-products between pairs of data instances
(see [8] for details on kernel methods).

Formally, we consider an instance being represented by a collection of vectors, which for
the sake of convenience, form the columns of a matrix. We would like to find an algebraic
family of similarity functionssim(A,B) over matricesA,B which satisfy the following
requirements: (i)sim(A,B) is an inner product, i.e.,sim(A,B) = φ(A)>φ(B) for some
mappingφ() from matrices to vectors, (ii)sim(A,B) is built over local kernel functions
k(ai,bj) over columnsai andbj of A,B respectively, (iii) The column cardinality (rank
of column space) ofA andB need not be the same (number of local parts may differ from
image to image), and (iv) the parameters ofsim(A,B) should induce the properties of in-
variance to order (alignement) of parts, part occlusions, and degree of interactions between
local parts. In a nutshell, our work provides a cook-book of sorts whichfundamentally
covers the possible algebraic kernels over collections of local representations built on top
of local kernelsby combining (linearly and non-linearly) local kernels to form a family of
global kernels over local representations.

The design of a kernel over sets of vectors has been recently attracting much attention in the
computer vision and machine learning literature. A possible approach is to fit a distribution
to the set of vectors and define the kernel as a distribution matching measure [9, 12, 4].
This has the advantage that the number of local parts can vary but at the expense of fitting
a distribution to the variation over parts. The variation could be quite complex at times,
unlikely to fit into a known family of distributions in many situations of interest, and in
practice the sample size (number of columns ofA) is not sufficiently large to reliably fit
a distribution. The alternative, which is the approach taken in this paper, is to create a
kernel over sets of vectors in a direct manner. When the column cardinality is equal it is
possible to model the similarity measure as a function over the principal angles between the
two column spaces ([14] and references therein) while for varying column cardinality only
heuristic similarity measures (which are not positive definite) have so far been introduced
[13].

It is important to note that although we chose SVM over local representations as the appli-
cation to demonstrate the use of set kernels, the need for adequately working with instances
made out of sets of various cardinalities spans many other application domains. For exam-
ple, an image sequence may be represented by a set (ordered or unordered) of vectors,
where each vector stands for an image, the pixels in an image can be represented as a tuple
consisting of position, intensity and other attributes, motion trajectories of multiply mov-
ing bodies can be represented as a collection of vectors, and so on. Therefore, the problem
addressed in this paper is fundamental both theoretically and from a practical perspective
as well.

2 The General Family of Inner-Products over Matrices

We wish to derive the general family of positive definite similarity measuressim(A,B)
over matricesA,B which have the same number of rows but possibly different column
rank (in particular, different number of columns). LetA be of dimensionsn × k and
B of dimensionn × q wheren is fixed andk, q can vary at will over the application of
sim(·, ·) on pairs of matrices. Letm = max{n, k, q} be the upper bound over all values



of k, q encountered by the data. Letai,bj be the column vectors of matricesA,B and
let k(ai,bj) be the local kernel function. For example, in the context where the column
vectors represent local parts of an image, then the matching functionk(·, ·) between pairs
of local parts provides the building blocks of the overall similarity function. The local
kernel is some positive definite functionk(x, y) = φ(x)>φ(y) which is the inner-product
between the ”feature”-mapped vectorsx, y for some feature mapφ(·). For example, ifφ(·)
is the polynomial map of degree up tod, thenk(x, y) = (1 + x>y)d.

The local kernels can be combined in a linear or non-linear manner. When the combination
is linear the similarity becomes the analogue of the inner-product between vectors extended
to matrices. We will refer to the linear family assim(A,B) =< A,B > and that will be
the focus of this section. In the next section we will derive the general (algebraic) non-
linear family which is based on ”lifting” the input matricesA,B onto higher dimensional
spaces and feeding the result onto the< ·, · > machinery developed in this section, i.e.,
sim(A,B) =< ψ(A), ψ(B) >.

We will start by embeddingA,B ontom × m matrices by zero padding as follows. Let
ei denote the i’th standard basis vector(0, .., 0, 1, 0, .., 0) of Rm. The the embedding is
represented by linear combinations of tensor products:

A→
n∑

i=1

k∑
j=1

aijei ⊗ ej , B →
n∑

l=1

q∑
t=1

bltel ⊗ et.

Note thatA,B are the upper-left blocks of the zero-padded matrices. LetS be a positive
semi definitem2×m2 matrix represented byS =

∑p
r=1Gr⊗Fr whereGr, Fr arem×m

matrices1. Let F̂r be theq × k upper-left sub-matrix ofF>
r , and letĜr be then × n

upper-left sub-matrix ofGr. We will be using the following three identities:

Gx1 ⊗ Fx2 = (G⊗ F )(x1 ⊗ x2),
(G⊗ F )(G′ ⊗ F ′) = GG′ ⊗ FF ′,

< x1 ⊗ x2, y1 ⊗ y2 >= (x>1 y1)(x
>
2 y2).

The inner-product< A,B > over all p.s.d. matricesS has the form:

< A,B > = <
∑
i,j

aijei ⊗ ej , (
∑

r

Gr ⊗ Fr)
∑
l,t

bltel ⊗ et >

=
∑

r

∑
i,j,l,t

aijblt < ei ⊗ ej , Grel ⊗ Fret >

=
∑

r

∑
i,j,l,t

aijblt(e>i Grel)(e>j Fret)

=
∑

r

∑
i,j,l,t

aijblt(Gr)il(Fr)jt

=
∑

r

∑
lt

(A>ĜrB)jt(Fr)jt

= trace

(∑
r

(A>ĜrB)F̂r

)
We have represented the inner product< A,B > using the choice ofm × m matrices
Gr, Fr instead of the choice of a singlem2 × m2 p.s.d. matrixS. The matricesGr, Fr

1Any S can be represented as a sum over tensor products: given column-wise ordering, the matrix
G⊗ F is composed ofn× n blocks of the formfijG. Therefore, takeGr to be then× n blocks of
S andFr to be the elemental matrices which have ”1” in coordinater = (i, j) and zero everywhere
else.



must be selected such that
∑p

r=1Gr ⊗ Fr is positive semi definite. The problem of decid-
ing on the the necessary conditions onFr andGr such that the sum over tensor products is
p.s.d is difficult. Even deciding whether a givenS has a separable decomposition is known
to be NP-hard [3]. The sufficient conditions are easy — choosingGr, Fr to be positive
semi definite would make

∑p
r=1Gr ⊗ Fr positive semi definite as well. In this context

(of separableS) we need one more constraint in order to work with non-linear local ker-
nelsk(x, y) = φ(x)>φ(y): the matricesĜr = M̃>

r M̃r must ”distribute with the kernel”,
namely there existMr such that

k(Mrx,Mry) = φ(Mrx)>φ(Mry) = φ(x)>M̃>
r M̃rφ(y) = φ(x)>Ĝrφ(y).

To summarize the results so far, the most general, but seperable, analogue of the inner-
product over vectors to the inner-product of matrices of varying column cardinality has the
form:

< A,B >=
∑

r

trace(HrF̂r) (1)

Where the entries ofHr consists ofk(Mrai,Mrbj) over the columns ofA,B after possibly
undergoing global coordinate changes byMr (the role ofĜr), andF̂r are theq × k upper-
left sub-matrix of positive definitem×m matricesF>

r .

The role of the matriceŝGr is to perform global coordinate changes ofRn before applica-
tion of the kernelk() on the columns ofA,B. These global transformations include pro-
jections (say onto prototypical ”parts”) that may be given or ”learned” from a training set.
The matriceŝFr determine the range of interaction between columns ofA and columns of
B. For example, when̂Gr = I then< A,B >= trace(A>BF̂ ) whereF̂ is the upper-left
submatrix with the appropriate dimension of some fixedm×m p.s.d matrixF =

∑
r Fr.

Note that entries ofA>B arek(ai,bj). In other words, whenGr = I, < A,B > boils
down to a simple linear super-position of the local kernels,

∑
ij k(ai,bj)fij where the en-

tries fij are part of the upper-left block of a fixed positive definite matrixF where the
block dimensions are commensurate with the number of columns ofA and those ofB. The
various choices ofF determine the type ofinvariancesone could obtain from the simi-
larity measure. For example, whenF = I the similarity is simply the sum (average) of
the local kernelsk(ai,bi) thereby assuming we have a strictalignmentbetween the local
parts represented byA and the local parts represented byB. On the other end of the in-
variance spectrum, whenF = 11> (all entries are ”1”) the similarity measure averages
over all interactions of local partsk(ai,bj) thereby achieving aninvarianceto the order of
the parts. Adecayingweighted interaction such asfij = σ−|i−j| would provide a middle
ground between the assumption of strict alignment and the assumption of complete lack of
alignment. In the section below we will derive the non-linear version ofsim(A,B) based
on the basic machinery of< A,B > of eqn. (1) and lifting operations onA,B.

3 Lifting Matrices onto Higher Dimensions

The family of sim(A,B) =< A,B > forms a weighted linear superposition of the
local kernelk(ai,bj). Non-linear combinations of local kernels emerge using map-
pingsψ(A) from the input matrices onto other higher-dimensional matrices, thus forming
sim(A,B) =< ψ(A), ψ(B) >. Additional invariance properties and parameters control-
ling the perfromance ofsim(A,B) emerge with the introduction of non-linear combina-
tions of local kernels, and those will be discussed later on in this section.

Consider the general d-fold liftingψ(A) = A⊗d which can be viewed as and × kd matrix.
LetFr be a p.s.d. matrix of dimensionmd ×md andF̂r be the upper-leftqd × kd block of
Fr. LetGr = (Ĝr)⊗d be a p.s.d matrix of dimensionnd × nd whereĜr is p.s.d.n × n
matrix. Using the identity(A⊗d)>B⊗d = (A>B)⊗d we obtain the inner-product in the



lifted space:

< A⊗d, B⊗d >=
∑

r

trace
(
(A>ĜrB)⊗dF̂r

)
.

By taking linear combinations of< A⊗l, B⊗l >, l = 1, ..., d, we get the general non-
homogenous d-fold inner-productsimd(A,B). A this point the formulation is general but
somewhat unwieldy computational-wise. The key for computational simplification lay in
the fact that choices ofFr determine not only local interactions (as in the linear case) but
alsogroup invariances. The group invariances are a result ofapplying symmetric operators
on the tensor product space— we will consider two of those operators here, known as the
the d-fold alternating tensorA∧d = A ∧ .... ∧ A and the d-fold symmetric tensorA·d =
A · ... ·A. These lifting operations introduce thedeterminantandpermanentoperations on
submatrices ofA>ĜrB, as described below.

The alternating tensor is a multilinear map ofRn, (A ∧ .... ∧ A)(x1 ∧ ... ∧ xd) = Ax1 ∧
... ∧Axd, where

x1 ∧ ... ∧ xd =
1
d!

∑
σ∈Sd

sign(σ)xσ(1) ⊗ ....⊗ xσ(d),

whereSd is the symmetric group overd letters andσ ∈ Sd are the permutations of the
group. If x1, ..., xn form a basis ofRn, then the

(
n
d

)
elementsxi1 ∧ ... ∧ xid

, where1 ≤
i1 < ... < id ≤ n form a basis of the alternatingd − fold tensor product ofRn, denoted
as ΛdRn. If A ∈ Rn×k is a linear map onRn sending points toRk, thenA∧d is a
linear map onΛdRn sendingx1 ∧ ... ∧ xd to Ax1 ∧ ... ∧ Axd, i.e., sending points in
ΛdRn to points inΛdRk. The matrix representation ofA∧d is called the ”d’th compound
matrix” Cd(A) whose(i1, ..., id|j1, ..., jd) entry has the valuedet(A[i1, ..., id : j1, ..., jd])
where the determinant is of thed × d block constructed by choosing the rowsi1, ..., id
and the columnsj1, ..., jd of A. In other words,Cd(A) has

(
n
d

)
rows and

(
k
d

)
columns

(instead ofnd × kd necessary forA⊗d) whose entries are equal to thed × d minors ofA.
Whenk = d, Ck(A) is a vector known as the Grasmanian ofA, and whenn = k = d
thenCd(A) = det(A). Finally, the identity(A⊗d)>B⊗d = (A>B)⊗d specializes to
(A∧d)>B∧d = (A>B)∧d which translates to the identityCd(A)>Cd(B) = Cd(A>B)
known as the Binet-Cauchy theorem [1]. Taken together, the ”d-fold alternating kernel”
Λd(A,B) is defined by:

Λd(A,B) =< A∧d, B∧d >=< Cd(A), Cd(B) >=
∑

r

trace
(
Cd(A>ĜrB)F̂r

)
, (2)

whereF̂r is the
(

q
d

)
×
(
k
d

)
upper-left submatrix of the p.s.d

(
m
d

)
×
(
m
d

)
matrix Fr. Note

that the local kernel plugs in as the entries of(A>ĜrB)ij = k(Mrai,Mrbj) whereĜr =
M>

r Mr.

Another symmetric operator on the tensor product space is via the d-fold symmetric tensor
spaceSymdRn whose points are:

x1 · · · xd =
1
d!

∑
σ∈Sd

xσ(1) ⊗ ....⊗ xσ(d).

The analogue ofCd(A) is the ”d’th power matrix”Rd(A) whose(i1, ..., id|j1, ..., jd) entry
has the valueperm(A[i1, ..., id : j1, ..., jd]) and which stands for the mapA·d

(A · · ·A)(x1 · · · xd) = Ax1 · · ·Axd.

In other words,Rd(A) has
(
n+d−1

d

)
rows and

(
k+d−1

d

)
columns whose entries are equal to

thed×d permanentsofA. The analogue of the Binet-Cauchy theorem isRd(A)>Rd(B) =



Rd(A>B). The ensuing kernel similarity function, referred to as the ”d-fold symmetric
kernel” is:

Symd(A,B) =< A·d, B·d >=< Rd(A), Rd(B) >=
∑

r

trace
(
Rd(A>ĜrB)F̂r

)
(3)

whereF̂r is the
(
q+d−1

d

)
×
(
k+d−1

d

)
upper-left submatrix of the positive definite

(
m+d−1

d

)
×(

n+d−1
d

)
matrixFr. Due to lack of space we will stop here and spend the remainder of this

section in describing in laymen terms what are the properties of these similarity measures,
how they can be constructed in practice and in a computationally efficient manner (despite
the combinatorial element in their definition).

3.1 Practical Considerations

To recap, the family of similarity functionssim(A,B) comprise of the linear version
< A,B > (eqn. 1) and non-linear versionsΛl(A,B), Syml(A,B) (eqns. 2,3) which are
group projections of the general kernel< A⊗d, B⊗d >. These different similarity func-
tions are controlled by the choice of three items:Gr, Fr and the parameterd representing
the degree of the tensor product operator. Specifically, we will focus on the caseGr = I

and onΛd(A,B) as a representative of the non-linear family. The role ofĜr is fairly in-
teresting as it can be viewed as a projection operator from ”parts” to prototypical parts that
can be learned from a training set but we leave this to the full length article that will appear
later.

Practically, to computeΛd(A,B) one needs to run over alld × d blocks of thek × q ma-
trix A>B (whose entries arek(ai,bj)) and for each block compute the determinant. The
similarity function is a weighted sum of all those determinants weighted byfij . By appro-
priate selection ofF one can control both the complexity (avoid running over all possible
d × d blocks) of the computation and the degree of interaction between the determinants.
These determinants have an interesting geometric interpretation if those are computed over
unitary matrices — as described next.

Let A = QARA andB = QBRB be the QR factorization of the matrices, i.e.,QA has
orthonormal columns which span the column space ofA, then it has been recently shown
[14] thatR−1

A can be computed fromA using only operations overk(ai,aj). Therefore,
the productQ>

AQB , which is equal toR−T
A A>BR−1

B , can be computed using only local
kernel applications. In other words, for eachA computeR−1

A (can be done using only
inner-products over columns ofA), then when it comes to computeA>B compute in-
steadR−T

A A>BR−1
B which is equivalent to computingQ>

AQB . Thus effectively we have
replaced everyA with QA (unitary matrix).

Now, Λd(QA, QB) for unitary matrices is the sum over the product of the cosine principal
angles betweend-dim subspaces spanned by columns ofA andB. The value of each
determinant of thed × d blocks ofQ>

AQB is equal to the product of the cosine principal
angles between the respectived-dim subspaces determined by corresponding selection of
d columns fromA andd columns fromB. For example, the casek = q = d produces
Λd(QA, QB) = det(Q>

AQB) which is the product of the eigenvalues of the matrixQ>
AQB .

Those eigenvalues are the cosine of the principal angles between the column space ofA
and the column space ofB [2]. Therefore,det(Q>

AQB) measures the ”angle” between the
two subspaces spanned by the respective columns of the input matrices — in particular is
invariant to the order of the columns. For smaller values ofd we obtain thesum over such
productsbetween subspaces spanned by subsets ofd columns betweenA andB.

The advantage of smaller values ofd is two fold: first it enables to compute the similarity
whenk 6= q and second breaks down the similarity between subspaces into smaller pieces.
The entries of the matrixF determine which subspaces are being considered and the inter-
action between subspaces inA andB. A diagonalF compares corresponding subspaces



(a) (b)

Figure 1: (a) The configuration of the nine sub-regions is displayed over the gradient image. (b)
some of the positive examples — note the large variation in appearance, pose and articulation.

betweenA andB whereas off-diagonal entries would enable comparisons between differ-
ent choices of subspaces inA and inB. For example, we may want to consider choices
of d columns arranged in a ”sliding” fashion, i.e., column sets{1, .., d}, {2, ..., d + 1}, ...
and so forth,instead of the combinatorial number of all possible choices. This selection
is associated with a sparse diagonalF where the non-vanishing entries along the diagonal
have the value of ”1” and correspond to the sliding window selections.

To conclude, in the linear version< A,B > the role ofF is to determine the range of
interaction between columns ofA and columns ofB, whereas with the non-linear version
it is the interaction betweend-dim subspacesrather than individual columns. We could
select all possible interactions (exponential number) or any reduced interaction set such as
the sliding window rule (linear number of choices) as described above.

4 Experiments

We examined the performance ofsim(A,B) on part-based representations for pedestrian
detection using SVM for the inference engine. The dataset we used (courtesy of Mobileye
Ltd.) covers a challenging variability of appearance, viewing position and body articulation
(see Fig. 1). We ran a suit of comparative experiments usingsim(A,B) =< A,B >
with three versions ofF = {I, 11>, decay} with local kernels covering linear,d’th degree
polynomial (d= 2, 6) and RBF kernel, and likewise withsim(A,B) = Λd(A,B) with d =
2, sparse diagonalF (covering a sliding window configuration) and with linear, polynomial
and RBF local kernels. We compared our results to the conventional down-sampled holistic
representation where the raw images were down-sampled to size20 × 20 and32 × 32.
Our tests also included simulation of occlusions (in the test images) in order to examine
the sensitivity of oursim(A,B) family to occlusions. For the local part representation,
the input image was divided into 9 fixed regions where for each image local orientation
statistics were were generated following [5, 7] with a total of 22 numbers per region (see
Fig 1a), thereby making a22 × 9 matrix representation to be fed intosim(A,B). The
size of the training set was 4000 split evenly between positive and negative examples and
a test set of 4000 examples was used to evaluate the performance of each trial. The table
below summarizes the accuracy results for the raw-pixel (holistic) representation over three
trials: (i) images down-sampled to20 × 20, (ii) images down-sampled to32 × 32, and
(iii) test images were partially occluded (32× 32 version). The accuracy figures are the
ratio between the sum of the true positives and true negatives and the total number of test
examples.

raw linear poly d = 2 poly d = 6 RBF
20× 20 78% 83% 84% 86%
32× 32 78% 84% 85% 82%
occlusion 73.5% 72% 77% 76.5%

Thetable below displayssim(A,B) with linear and RBF local kernels.

local kernel < A, B >, F = I < A, B >, F = 11> < A, B >, fij = 2−|i−j| Λ2(A, B)

linear 90.8% 85% 90.6% 88%
RBF 91.2% 85% 90.4% 90%



One can see that the local part representation provides a sharp increase in accuracy com-
pared to the raw pixel holistic representation. The added power of invariance to order of
parts induced by< A,B >,F = 11> is not required since the parts are aligned and there-
fore the accuracy is the highest for the linear combination of local RBF< A,B >,F = I.
The same applies for the non-linear versionΛd(A,B) — the additional invariances that
come with a non-linear combination of local parts are apparently not required. The power
of non-linearity associated with the combination of local parts comes to bear when the
test images have occluded parts, i.e., at random one of the columns of the input matrix is
removed (or replaced with a random vector), as shown in the table below:

local kernel < A, B >, F = I Λ2(A, B)

linear 62% 87%
RBF 83% 88%

One can notice that a linear combination of local parts suffers from reduced accuracy
whereas the non-linear combination maintains a stable accuracy (compare the right-most
columns of the two tables above). Although the experiments above are still preliminary
they show the power and potential of thesim(A,B) family of kernels defined over local
kernels. With the principles laid down in Section 3 one can construct a large number (we
touched only a few) of algebraic kernels which combine the local kernels in non-linear
ways thus creating invariances to order and increased performance against occlusion. Fur-
ther research is required for sifting through the various possibilities with this new family
of kernels and extracting their properties, their invariances and behavior under changing
parameters (Fr, Gr, d).
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