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Abstract

Recently, there have been several advances in the machine learning and
pattern recognition communities for developing manifold learning algo-
rithms to construct nonlinear low-dimensional manifolds from sample
data points embedded in high-dimensional spaces. In this paper, we de-
velop algorithms that address two key issues in manifold learning: 1)
the adaptive selection of the neighborhood sizes; and 2) better fitting the
local geometric structure to account for the variations in the curvature
of the manifold and its interplay with the sampling density of the data
set. We also illustrate the effectiveness of our methods on some synthetic
data sets.

1 Introduction

Recently, there have been advances in the machine learning community for developing ef-
fective and efficient algorithms for constructing nonlinear low-dimensional manifolds from
sample data points embedded in high-dimensional spaces, emphasizing simple algorithmic
implementation and avoiding optimization problems prone to local minima. The proposed
algorithms include Isomap [6], locally linear embedding (LLE) [3] and its variations, man-
ifold charting [1], hessian LLE [2] and local tangent space alignment (LTSA) [7], and they
have been successfully applied in several computer vision and pattern recognition prob-
lems. Several drawbacks and possible extensions of the algorithms have been pointed out
in [4, 7] and the focus of this paper is to address two key issues in manifold learning: 1)
how to adaptively select the neighborhood sizes in the k-nearest neighbor computation to
construct the local connectivity; and 2) how to account for the variations in the curvature
of the manifold and its interplay with the sampling density of the data set. We will discuss
those two issues in the context of local tangent space alignment (LTSA) [7], a variation
of locally linear embedding (LLE) [3] (see also [5],[1]). We believe the basic ideas we
proposed can be similarly applied to other manifold learning algorithms.

We first outline the basic steps of LTSA and illustrate its failure modes using two simple
examples. Given a data set X = [x1, . . . , xN ] with xi ∈ Rm, sampled (possibly with
noise) from a d-dimensional manifold (d < m), LTSA proceeds in the following steps.

1) LOCAL NEIGHBORHOOD CONSTRUCTION. For each xi, i = 1, . . . , N , determine a set
Xi = [xi1 , . . . , xiki

] of its neighbors (ki nearest neighbors, for example).
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Figure 1: The data sets (first column) and computed coordinates τi by LTSA vs. the cen-
tered arc-length coordinates Top row: Example 1. Bottom row: Example 2.

2) LOCAL LINEAR FITTING. Compute an orthonormal basis Qi for the d-dimensional
tangent space of the manifold at xi, and the orthogonal projection of each xij

to the tangent

space: θ
(i)
j = QT

i (xij
− x̄i) where x̄i is the mean of the neighbors.

3) LOCAL COORDINATES ALIGNMENT. Align the N local projections Θi =

[θ
(i)
1 , · · · , θ(i)

ki
], i = 1, . . . , N , to obtain the global coordinates τ1, . . . , τN . Such an align-

ment is achieved by minimizing the global reconstruction error

∑

i

‖Ei‖2
2 ≡

∑

i

‖Ti(I − 1

ki
eeT ) − LiΘi‖2

2 (1.1)

over all possible Li ∈ Rd×d and row-orthonormal T = [τ1, . . . , τN ] ∈ Rd×N , where
Ti = [τi1 , . . . , τiki

] with the index set {i1, . . . , iki
} determined by the neighborhood of

each xi, and e is a vector of all ones.

Two strategies are commonly used for selecting the local neighborhood size ki: one is k
nearest neighborhood ( k-NN with a constant k for all the sample points) and the other is ε-
neighborhood [3, 6]. The effectiveness of the manifold learning algorithms including LTSA
depends on the manner of how the nearby neighborhoods overlap with each other and the
variation of the curvature of the manifold and its interplay with the sampling density [4].
We illustrate those issues with two simple examples.

Example 1. We sample data points from a half unit circle xi = [cos(ti), sin(ti)]
T , i =

1 . . . , N. It is easy to see that ti represent the arc-length of the circle. We choose ti ∈ [0, π]
according to

ti+1 − ti = 0.1(0.001 + | cos(ti)|)
starting at t1 = 0, and set N = 152 so that tN ≤ π and tN+1 > π. Clearly, the half circle
has unit curvature everywhere. This is an example of highly-varying sampling density.

Example 2. The date set is generated as xi = [ti, 10e
−t2i ]T , i = 1 . . . , N, where ti ∈

[−6, 6] are uniformly distributed. The curvature of the 1-D curve at parameter value t is
given by

cg(t) =
20|1 − 2t2|e−t2

(1 + 40t2e−2t2)3/2



which changes from mint cg(t) = 0 to maxt cg(t) = 20 over t ∈ [−6, 6]. We set N = 180.
This is an example of highly-varying curvature.

For the above two data sets, LTSA with constant k-NN strategy fails for any reasonable
k we have tested. So does LTSA with constant ε-neighborhoods. In the first column of
Figure 1, we plot these two data sets. The computed coordinates by LTSA with constant k-
neighborhoods are plotted against the centered arc-length coordinates for a selected range
of k (ideally, the plots should display points on a straight line of slops ±π/4).

2 Adaptive Neighborhood Selection

In this section, we propose a neighborhood contraction and expansion algorithm for adap-
tively selecting ki at each sample point xi. We assume that the data are generated from
a parameterized manifold, xi = f(τi), i = 1, . . . , N, where f : Ω ⊂ Rd → Rm. If f
is smooth enough, using first-order Taylor expansion at a fixed τ , for a neighboring τ̄ , we
have

f(τ̄) = f(τ) + Jf (τ) · (τ̄ − τ) + ε(τ, τ̄), (2.2)

where Jf (τ) ∈ Rm×d is the Jacobi matrix of f at τ and ε(τ, τ̄) represents the error term
determined by the Hessian of f , ‖ε(τ, τ̄)‖ ≈ cf (τ)‖τ̄ − τ‖2

2, where cf (τ) ≥ 0 represents
the curvature of the manifold at τ . Setting τ = τi and τ̄ = τij

gives

xij
= xi + Jf (τi) · (τij

− τi) + ε(τi, τij
). (2.3)

A point xij
can be regarded as a neighbor of xi with respect to the tangent space spanned

by the columns of Jf (τi) if

‖τij
− τi‖2 is small and ‖ε(τi, τij

)‖2 � ‖Jf (τi) · (τij
− τi)‖2.

The above conditions, however, are difficult to verify in practice since we do not know
Jf (τi). To get around this problem, consider an orthogonal basis matrix Qi of the tangent
space spanned by the columns of Jf (τi) which can be approximately computed by the SVD
of Xi− x̄ie

T , where x̄i is the mean of the neighbors xij
= f(τij

), j = 1, . . . , ki. Note that

x̄i =
1

ki

ki
∑

j=1

xij
= xi + Jf (τi) · (τ̄i − τi) + ε̄i,

where ε̄i is the mean of ε(τi, τi1), . . . , ε(τi, τik1
). Eliminating xi in (2.3) by the represen-

tation above yields xij
= x̄i + Jf (τi) · (τij

− τ̄i) + ε
(i)
j with ε

(i)
j = ε(τi, τij

) − ε̄i. Let

θ
(i)
j = QT

i (xij
− x̄i), we have xij

= x̄i + Qiθ
(i)
j + ε

(i)
j . Thus, xij

can be selected as a

neighbor of xi if the orthogonal projection θ
(i)
j is small and

‖ε(i)j ‖2 = ‖xij
− x̄i − Qiθ

(i)
j ‖2 � ‖Qiθ

(i)
j ‖2 = ‖θ(i)

j ‖2. (2.4)

Assume all the xij
satisfy the above inequality, then we should approximately have

‖(I − QiQ
T
i )(Xi − x0e

T )‖F ≤ η‖QT
i (Xi − x0e

T )‖F (2.5)

We will use (2.5) as a criterion for adaptive neighbor selection, starting with a K-NN at
each sample point xi with a large enough initial K and deleting points one by one until
(2.5) holds. This process will terminate when the neighborhood size equals d + k0 for
some small k0 and (2.5) is not true. In that case, we may need to reselect a k-NN that

minimizes the ratio ‖(I−QiQ
T
i )(Xi−x̄ie

T )‖F

‖QT
i

(Xi−x̄ieT )‖F
as the neighborhood set as is detailed below.

NEIGHBORHOOD CONTRACTION.



C0. Determine the initial K and K-NN neighborhood X
(K)
i = [xi1 , . . . , xiK

] for xi,
ordered in non-decreasing distances to xi,

‖xi1 − xi‖ ≤ ‖xi2 − xi‖ ≤ . . . ≤ ‖xiK
− xi‖.

Set k = K.

C1. Let x̄
(k)
i be the column mean of X

(k)
i . Compute the orthogonal basis matrix Q

(k)
i ,

the d largest singular vectors of X
(k)
i − x̄

(k)
i eT . Set Θ

(k)
i = (Q

(k)
i )T (X

(k)
i −

x̄
(k)
i eT ).

C2. If ‖X(k)
i − x̄

(k)
i eT − Q

(k)
i Θ

(k)
i ‖F < η‖Θ(k)

i ‖F , then set Xi = X
(k)
i , Θi = Θ

(k)
i ,

and terminate.

C3. If k > d+k0, then delete the last column of X
(k)
i to obtain X

(k−1)
i , set k := k−1,

and go to step C1, otherwise, go to step C4.

C4. Let k = arcmind+k0≤j≤K
‖X

(j)
i

−x̄
(j)
i

eT −Q
(j)
i

Θ
(j)
i

‖F

‖Θ
(j)
i

‖F

, and set Xi = X
(k)
i , Θi =

Θ
(k)
i .

Step C4 means that if there is no k-NN (k ≥ d + k0) satisfying (2.5), then the contracted

neighborhood Xi should be one that minimizes ‖Xi−x̄ie
T −QiΘi‖F

‖Θi‖F
.

Once the contraction step is done we can still add back some of unselected xij
to increase

the overlap of nearby neighborhoods while still keep (2.5) intact. In fact, we can add xij
if

‖xij
− x̄i − Qiθj‖ ≤ η‖θj‖ which is demonstrated in the following result (we refer to [8]

for the proof).

Theorem 2.1 Let Xi = [xi1 , . . . , xik
] satisfy (2.5). Furthermore, we assume

‖xij
− x0 − Qiθ

(i)
j ‖ ≤ η‖θ(i)

j ‖, j = k + 1, . . . , k + p, (2.6)

where θ
(i)
j = QT

i (xij
− x0). Denote by x̃i the column mean of the expanded matrix

X̃i = [Xi, xik+1
, . . . xik+p

]. Then for the left-singular vector matrix Q̃i corresponding to
the d largest singular values of X̃i − x̃ie

T ,

‖(I − Q̃iQ̃
T
i )(X̃i − x̃ie

T )‖F ≤ η
(

‖Q̃T
i (X̃i − x̃ie

T )‖F +

√
p

k + p
‖

k+p
∑

j=k+1

θ
(i)
j ‖2

)

.

The above result shows that if the mean of the projections θ
(i)
j of the expanding neighbors

is small and/or the number of the expanding points are relatively small, then approximately,

‖(I − Q̃iQ̃
T
i )(X̃i − x̃ie

T )‖F ≤ η‖Q̃T
i (X̃i − x̃ie

T )‖F .

NEIGHBORHOOD EXPANSION.

E0. Set ki to be the column number of Xi obtained by the neighborhood contracting
step. For j = ki + 1, . . . ,K, compute θ

(i)
j = QT

i (xij
− x̄i).

E1. Denote by Ji the index subset of j’s, ki < j ≤ K, such that ‖(I − QiQ
T
i )(xij

−
x̄i)‖2 ≤ ‖θ(i)

j ‖2. Expand Xi by adding xij
, j ∈ Ji.

Example 3. We construct the data points as xi = [sin(ti), cos(ti), 0.02ti]
T , i = 1, . . . , N,

with ti ∈ [0, 4π] uniformly distributed, which is plotted in the top-left panel in Figure 2.
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Figure 2: Plots of the data sets (top left), the computed coordinates τi by LTSA vs. the
centered arc-length coordinates (a ∼ c), the computed coordinates τi by LTSA with neigh-
borhood C contraction vs the centered arc-length coordinates (e ∼ g), and the computed
coordinates τi by LTSA with neighborhood contraction and expansion vs. the centered
arc-length coordinates (bottom left)

LTSA with constant k-NN fails for any k: small k leads to lack of necessary overlap among
the neighborhoods while for large k, the computed tangent space can not represent the local
geometry well. In (a ∼ c) of Figure 2, we plot the coordinates computed by LTSA vs. the
arc-length of the curve. Contracting the neighborhoods without expansion also results in
bad results, because of small sizes of the resulting neighborhoods, see (e ∼ g) of Figure 2.
Panel (d) of Figure 2 gives an excellent result computed by LTSA with both neighborhood
contraction and expansion. We want mention that our adaptive strategies also work well
for noisy data sets, we refer the readers to [8] for some examples.

3 Alignment incorporating variations of manifold curvature

Let Xi = [xi1 , . . . , xiki
] consists of the neighbors determined by the contraction and ex-

pansion steps in the above section. In (1.1), we can show that the size of the error term
‖Ei‖2 depends on the size of the curvature of manifold at sample point xi [8]. To make the
minimization in (1.1) more uniform, we need to factor out the effect of the variations of the
curvature. To this end, we pose the following minimization problem,

min
T,{Li}

∑

i

1

ki
‖(Ti(I − 1

ki
eeT ) − LiΘi)D

−1
i ‖2

2, (3.7)

where Di = diag(φ(θ
(i)
1 ), . . . , φ(θ

(i)
ki

)), and φ(θ
(i)
j ) is proportional to the curvature of the

manifold at the parameter value θi, the computation of which will be discussed below. For
fixed T , the optimal Li is given by Li = Ti(Iki

− 1
ki

eeT )Θ+
i = TiΘ

+
i . Substituting it into

(3.7), we have the reduced minimization problem

min
T

∑

i

1

ki
‖Ti(Iki

− 1

ki
eeT − Θ+

i Θi)D
−1
i ‖2

2

Imposing the normalization condition TT T = I , a solution to the minimization problem
above is given by the d eigenvectors corresponding to the second to (d + 1)st smallest



eigenvalues of the following matrix

B ≡ (SW ) diag(D2
1/k1, . . . , D

2
n/kn)(SW )T ,

where W = (Iki
− 1

ki
eeT )(Iki

− Θ+
i Θi). Second-order analysis of the error term in (1.1)

shows that we can set φi(θ
(i)
j ) = γ + cf (τi)‖θ(i)

j ‖2 with a small positive constant γ to

ensure φi(θ
(i)
j ) > 0, and cf (τi) ≥ 0 represents the mean of curvatures cf (τi, τij

) for all
neighbors of xi.

Let Qi denote the orthonormal matrix of the largest d right singular vectors of Xi(I −
1
ki

eeT ). We can approximately compute cf (τi) as follows.

cf (τi) ≈
1

ki − 1

ki
∑

`=2

arccos(σmin(QT
i Qi`

))

‖θ`‖2
.

where σmin(·) is the smallest singular value of a matrix. Then the diagonal weights φ(θi)
can be computed as

φi(θ
(i)
j ) = η +

‖θj‖2
2

ki − 1

ki
∑

`=2

arccos(σmin(QT
i Qi`

))

‖θ`‖2
.

With the above preparation, we are now ready to present the adaptive LTSA algorithm.
Given a data set X = [x1, . . . , xN ], the approach consists of the following steps:

Step 1. Determining the neighborhood Xi = [xi1 , . . . , xiki
] for each xi, i = 1, . . . , N,

using the neighborhood contraction/expansion steps in Section 2.

Step 2. Compute the truncated SVD, say QiΣiV
T
i of Xi(I − 1

ki
eeT ) with d columns in

both Qi and Vi, the projections θ
(i)
` = QT

i (xi`
− x̄i) with the mean x̄i of the

neighbors, and denote Θi = [θ
(i)
1 , . . . , θ

(i)
ki

].

Step 3. Estimate the curvatures as follows. For each i = 1, . . . , N ,

ci =
1

ki − 1

ki−1
∑

`=2

arccos(σmin(QT
i Qi`

))

‖θ(i)
` ‖2

,

Step 4. Construct alignment matrix. For i = 1, . . . , N , set

Wi = Iki
−[

1√
ki

e, Vi][
1√
ki

e, Vi]
T , Di = γI+ diag(ci‖θ(i)

1 ‖2
2, . . . , ci‖θ(i)

ki
‖2
2),

where γ is a small constant number (usually we set γ = 1.0−6). Set initial B = 0.
Update B iteratively by

B(Ii, Ii) := B(Ii, Ii) + WiD
−1
i D−1

i WT
i /ki, i = 1, . . . , N.

Step 5. Align global coordinates. Compute the d + 1 smallest eigen-vectors of B and
pick up the eigenvector [u2, . . . , ud+1] matrix corresponding to the 2nd to d+1st
smallest eigenvalues, and set T = [u2, . . . , ud+1]

T .

4 Experimental Results

In this section, we present several numerical examples to illustrate the performance of the
adaptive LTSA algorithm. The test data sets include curves in 2D/3D Euclidean spaces.
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Figure 3: The computed coordinates τi by LTSA taking into account curvature and variable
size of neighborhood.

First we apply the adaptive LTSA to the date sets shown in Examples 1 and 2. Adaptive
LTSA with different starting k’s works every well. See Figure 3. It shows that for these tow
data sets, the adaptive LTSA is not sensitive to the choice of the starting k or the variations
in sampling densities and manifold curvatures.

Next, we consider the swiss-roll surface defined by f(s, t) = [s cos(s), t, s sin(s)]T . It
is easy to see that Jf (s, t)T Jf (s, t) = diag(1 + s2, 1). Denoting s = s(r) the inverse
transformation of r = r(s) defined by

r(s) =

s
∫

0

√

1 + α2 dα =
1

2
(s

√

1 + s2 + arcsinh(s)),

the swiss-roll surface can be parameterized as

f̂(r, t) = [s(t) cos(s(r)), t, s(r) sin(s(r))]T

and f̂ is isometric with respect to (r, t). In the left figure of Figure 4, we show there is a
distortion between the computed coordinates by LTSA with the best-fit neighborhood size
(bottom left) and the generating coordinates (r, t)T (top right). In the right panel of the
bottom row of the left figure of Figure 4, we plot the computed coordinates by the adaptive
LTSA with initial neighborhood size k = 30. (In fact, the adaptive LTSA is insensitive
to k and we will get similar results with a larger or smaller initial k). We can see that the
computed coordinates by the adaptive LTSA can recover the generating coordinates well
without much distortion.

Finally we applied both LTSA and the adaptive LTSA to a 2D manifold with 3 peaks
embedded in a 100 dimensional space. The data points are generated as follows. First
we generate N = 2000 3D points, yi = (ti, si, h(ti, si))

T , where ti and si randomly
distributed in the interval [−1.5, 1.5] and h(t, s) is defined by

h(t, s) = e−20t2−20s2 − e−10t2−10(s+1)2 − e−10(1+t)2−10s2

.

Then we embed the 3D points into a 100D space by xQ
i = Qyi, xH

i = Hyi, where
Q ∈ R100×3 is a random orthonormal matrix resulting in an orthogonal transformation
and H ∈ R100×3 a matrix with its singular values uniformly distributed in (0, 1) resulting
in an affine transformation. In the top row of the right figure of Figure 4, we plot the
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Figure 4: Left figure: 3D swiss-roll and the generating coordinates (top row), computed 2D
coordinates by LTSA with the best neighborhood size k = 15 (bottom left) and computed
2D coordinates by adaptive LTSA (bottom right). Right figure: coordinates computed by
LTSA for the orthogonally embedded 100D data set {xQ

i } (a) and the affinely embedded
100D data set {xH

i } (b), and the coordinates computed by the adaptive LTSA for {xQ
i } (c)

and {xH
i } (d).

computed coordinates by LTSA for xQ
i (shown in (a)) and xH

i (shown in (b)) with best-fit
neighborhood size k = 15. We can see the deformations (stretching and compression) are
quite prominent. In the bottom row of the right figure of Figure 4, we plot the computed
coordinates by the adaptive LTSA for xQ

i (shown in (c)) and xH
i (shown in (d)) with initial

neighborhood size k = 15. It is clear that the adaptive LTSA gives a much better result.
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