Optimal sub-graphical models

Mukund Narasimhan* and Jeff Bilmes*
Dept. of Electrical Engineering
University of Washington
Seattle, WA 98195
{mukundn, bi | res}@e. washi ngt on. edu

Abstract

We investigate the problem of reducing the complexity of a graphical
model (G, Pg) by finding a subgraph H of G, chosen from a class of
subgraphs H, such that H is optimal with respect to KL-divergence. We
do this by first defining a decomposition tree representation for G, which
is closely related to the junction-tree representation for G. We then give
an algorithm which uses this representation to compute the optimal H €
‘H. Gavril [2] and Tarjan [3] have used graph separation properties to
solve several combinatorial optimization problems when the size of the
minimal separators in the graph is bounded. We present an extension of
this technique which applies to some important choices of H even when
the size of the minimal separators of G are arbitrarily large. In particular,
this applies to problems such as finding an optimal subgraphical model
over a (k — 1)-tree of a graphical model over a k-tree (for arbitrary k)
and selecting an optimal subgraphical model with (a constant) d fewer
edges with respect to KL-divergence can be solved in time polynomial in
|V (G)] using this formulation.

1 Introduction and Preliminaries

The complexity of inference in graphical models is typically exponential in some parame-
ter of the graph, such as the size of the largest clique. Therefore, it is often required to find
a subgraphical model that has lower complexity (smaller clique size) without introducing
a large error in inference results. The KL-divergence between the original probability dis-
tribution and the probability distribution on the simplified graphical model is often used to
measure the impact on inference. Existing techniques for reducing the complexity of graph-
ical models including annihilation and edge-removal [4] are greedy in nature and cannot
make any guarantees regarding the optimality of the solution. This problem is NP-complete
[9] and so, in general, one cannot expect a polynomial time algorithm to find the optimal
solution. However, we show that when we restrict the problem to some sets of subgraphs,
the optimal solution can be found quite quickly using a dynamic programming algorithm
in time polynomial in the tree-width of the graph.

1.1 Notation and Terminology

A graph G = (V, E) is said to be triangulated if every cycle of length greater than 3
has a chord. A clique of G is a non-empty set S C V such that {a,b} € FE for all

*This work was supported by NSF grant 11S-0093430 and an Intel Corporation Grant.

e}

Figure 1: A triangulated graph G and a junction-tree for G

a,b € S. A clique S is maximal if .S is not properly contained in another clique. If
a and (3 are non-adjacent vertices of G then a set of vertices S C V' \ {«, 8} is called
an («, 3)-separator if o and 3 are in distinct components of G[V \ S]. S is a minimal
(o, B)-separator if no proper subset of S is an («, 3)-separator. S is said to be a minimal
separator if S is a minimal («, 3)-separator for some non adjacent a,b € V. If T =
(K, 8) is ajunction-tree for G (see [7]), then the nodes K of T" correspond to the maximal-
cliques of G, while the links S correspond to minimal separators of G (We reserve the
terms vertices/edges for elements of G, and nodes/links for the elements of 7). If G is
triangulated, then the number of maximal cliques is at most |V'|. For example, in the graph
G shown in Figure 1, K = {{b,c,d},{a,b,e},{b,e,c},{e,c, f},{c, f,g}}. The links
S of T correspond to minimal-separators of G in the following way. If V;V; € S (where
Vi, V; € KC and hence are cliques of G), then V; N V; # ¢. We label each edge V;V; € S
with the set V;; = V; NV}, which is a non-empty complete separator in G. The removal of
any link V;V; € S disconnects T into two subtrees which we denote 7(*) and 7%) (chosen
so that 7" contains V;). We will let £ be the nodes of T7(), and V) = Uy ¢ eV be
the set of vertices corresponding to the subtree 7(*). The junction tree property ensures that
VO NVO) =V,NV; = V;;. We will let G® be the subgraph induced by V(.

A graphical model is a pair (G, P) where P is the joint probability distribution for random
variables X1, Xo,..., X, and G is a graph with vertex set V(G) = {X1, Xo,..., X,,}
such that the separators in G imply conditional independencies in P (so P factorsaccording
to G). If G is triangulated, then the junction-tree algorithm can be used for exact inference
in the probability distribution P. The complexity of this algorithm grows with the treewidth
of G' (which is one less than the size of the largest clique in G when G is triangulated). The
growth is exponential when P is a discrete probability distribution, thus rendering exact
inference for graphs with large treewidth impractical. Therefore, we seek another graphical
model (H, Py) which allows tractable inference (so H should have lower treewidth than
G has). The general problem of finding a graphical model of tree-width at most & so as
to minimize the KL-divergence from a specified probability distribution is NP complete
for general & ([9]) However, it is known that this problem is solvable in polynomial time
(in |V (@)]) for some special cases cases (such as when G has bounded treewidth or when
k= 1[1]). If (G, Ps) and (H, Py) are graphical models, then we say that (H, Py) is a
subgraphical model of (G, Pg) if H is a spanning subgraph of G. Note in particular that
separators in G are separators in H, and hence (G, Py) is also a graphical model.

2 Graph Decompositions and Divide-and-Conquer Algorithms

For the remainder of the paper, we will be assuming that G = (V, E) is some triangulated
graph, with junction tree T = (K, S). As observed above, if V;V; € S, then the removal

{c. f,9}

d
frc}
{e,e, f}
G® © © © O
a ©® ® 0,

Figure 2: The graphs GV, G and junction-trees 7*) and 7') resulting from the removal
of the link V;; = {c, e}

of Vi; = V; NV; disconnects G into two (vertex-induced) subgraphs G and G¥) which
are both triangulated, with junction-trees 72 and 7'¢) respectively. We can recursively
decompose each of G(*) and GU) into smaller and smaller subgraphs till the resulting sub-
graphs are cliques. When the size of all the minimal separators are bounded, we may use
these decompositions to easily solve problems that are hard in general. For example, in [5]
it is shown that NP-complete problems like vertex coloring, and finding maximum inde-
pendent sets can be solved in polynomial time on graphs with bounded tree-width (which
are equivalent to spanning graphs with bounded size separators). We will be interested in
finding (triangulated) subgraphs of G that satisfy some conditions, such as a bound on the
number of edges, or a bound on the tree-width and which optimize separable objective
functions (described in Section 2)

One reason why problems such as this can often be solved easily when the tree-width of
G is bounded by some constant is this : If V;; is a separator decomposing G into G®
and G, then a divide-and-conquer approach would suggest that we try and find optimal
subgraphs of GV and G¥) and then splice the two together to get an optimal subgraph of
G. There are two issues with this approach. First, the optimal subgraphs of G and G/
need not necessarily match up on V;;, the set of common vertices. Second, even if the two
subgraphs agree on the set of common vertices, the graph resulting from splicing the two
subgraphs together need not be triangulated (which could happen even if the two subgraphs
individually are triangulated). To rectify the situation, we can do the following. We parti-
tion the set of subgraphs of G(¥) and G'¥) into classes, so that any subgraph of G(*) and any
subgraph G9) corresponding to the same class are compatible in the sense that they match
up on their intersection namely V;;, and so that by splicing the two subgraphs together, we
get a subgraph of G which is acceptable (and in particular is triangulated). Then given op-
timal subgraphs of both G(*) and G'¥) corresponding to each class, we can enumerate over
all the classes and pick the best one. Of course, to ensure that we do not repeatedly solve
the same problem, we need to work bottom-up (a.k.a dynamic programming) or memoize
our solutions. This procedure can be carried out in polynomial (in |V]) time as long as
we have only a polynomial number of classes. Now, if we have a polynomial number of
classes, these classes need not actually be a partition of all the acceptable subgraphs, though
the union of the classes must cover all acceptable subgraphs (so the same subgraph can be
contained in more than one class). For our application, every class can be thought of to be
the set of subgraphs that satisfy some constraint, and we need to pick a polynomial number
of constraints that cover all possibilities. The bound on the tree-width helps us here. If
|Vij| = k, then in any subgraph H of G, H[V;;] must be one of the 2(3) possible subgraphs
k
2

of G[V;;]. So, if k is sufficiently small (so 2(2) is bounded by some polynomial in V),

then this procedure results in a polynomial time algorithm. In this paper, we show that in
some cases we can characterize the space H so that we still have a polynomial number of
constraints even when the tree-width of G is not bounded by a small constant.

2.1 Separable objective functions

For cases where exact inference in the graphical model (G, P¢) is intractable, it is natural to
try to find a subgraphical model (H, Py) such that D(Pg || Pr) is minimized, and inference
using H is tractable. We will denote by 7 the set of subgraphs of G that are tractable for
inference. For example, this set could be the set of subgraphs of G with treewidth one less
than the treewidth of G, or perhaps the set of subgraphs of G with at d fewer edges. For a
specified subgraph H of G, there is a unique probability distribution Py factoring over H
that minimizes D(Pg|| Py). Hence, finding a optimal subgraphical model is equivalent to
finding a subgraph H for which D(Pg|| Py) is minimized. If V;; is a separator of G, we
will attempt to find optimal subgraphs of G by finding optimal subgraphs of G and G
and splicing them together. However, to do this, we need to ensure that the objective criteria
also decomposes along the separator V;;. Suppose that / is any triangulated subgraph of G.
Let P and P be the (marginalized) distributions of P on V(%) and V(9 respectively,
and Py and Py be the (marginalized) distributions of the distribution P on V® and
V) where H® = H[V®]and HU) = H[V)], The following result assures us that the
KL-divergence also factors according to the separator V.

Lemma 1. Suppose that (G, Ps) isa graphical model, H is a triangulated subgraph of
G, and Py factors over H. Then D(PG”PH) = D(PGU) PH(i)) + D(PG(j) ||PH(_1')) —
D(Fav) 1 Prtv.,)-

Proof. Since H is a subgraph of G, and V;; is a separator of G, V;; must also be a sepa-

P iy ({Xo i) Py {Xv 3
rator of H. Therefore, Py ({X,},cv) = s p},j,’ff]é{)xﬁ(;(V{) L
ij vEV,;

follows immediately. O

. The result

Therefore, there is hope that we can reduce our our original problem of finding an optimal
subgraph H € M as one of finding subgraphs of H®) C G and HU) C GU) that are
compatible, in the sense that they match up on the overlap V;;, and for which D(Pg || Pr)
is minimized. Throughout this paper, for the sake of concreteness, we will assume that
the objective criterion is to minimize the KL-divergence. However, all the results can
be extended to other objective functions, as long as they “separate” in the sense that for
any separator, the objective function is the sum of the objective functions of the two parts,
possibly modulo some correction factor which is purely a function of the separator. Another
example might be the complexity »(H) of representing the graphical model H. A very
natural representation satisfies r(G) = r(G) + r(G)) if G has a separator G N G/,
Therefore, the representation cost reduction would satisfy »(G) — r(H) = (r(G®) —
r(H®)) 4+ (r(GY)) — r(H1Y)), and so also factors according to the separators. Finally
note that any linear combinations of such separable functions is also separable, and so this
technique could also be used to determine tradeoffs (representation cost vs. KL-divergence
loss for example). In Section 4 we discuss some issues regarding computing this function.

2.2 Decompositions and decomposition trees

For the algorithms considered in this paper, we will be mostly interested in the decompo-
sitions that are specified by the junction tree, and we will represent these decompositions
by a rooted tree called a decomposition tree. This representation was introduced in [2, 3],
and is similar in spirit to Darwiche’s dtrees [6] which specify decompositions of directed
acyclic graphs. In this section and the next, we show how a decomposition tree for a graph
may be constructed, and show how it is used to solve a number of optimization problems.

Figure 3: The separator tree corresponding to Figure 1

A decomposition tree for G is a rooted tree whose vertices correspond to separators and
cliques of G. We describe the construction of the decomposition tree in terms of a junction-
tree T' = (K, S) for G. The interior nodes of the decomposition tree R(T") correspond to
S (the links of T" and hence the minimal separators of G). The leaf or terminal nodes
represent the elements of /C (the nodes of T" and hence the maximal cliques of G). R(T)
can be recursively constructed from 7" as follows : If T" consists of just one node K, (and
hence no edges), then R consists of just one node, which is given the label K as well. If
however, T' has more than one node, then 7" must contain at least one link. To begin, let
V;V; € S be any link in T". Then removal of the link V;V; results in two disjoint junction-
trees 7)) and 7). We label the root of R by the decomposition (V (); V;;; V(9)). The rest
of R is recursively built by successively picking links of 7" and 7) (decompositions of
G and GU)) to form the interior nodes of R. The effect of this procedure on the junction
tree of Figure 1 is shown in Figure 3, where the decomposition associated with the interior
nodes is shown inside the nodes. Let M be the set of all nodes of R(T"). For any interior
node M induced by the the link V;V; € S of T, then we will let M () and M) represent
the left and right children of M, and R and RU) be the left and right trees below M.

3 Finding optimal subgraphical models

3.1 Optimal sub (k — 1)-treesof k-trees

Suppose that G is a k-tree. A sub (k — 1)-tree of G is a subgraph H of G thatis (k — 1)-
tree. Now, if V;; is any minimal separator of G, then both GV and G'9) are k-trees on
vertex sets V(") and V'(9) respectively. It is clear that the induced subgraphs H[V (9] and
H[V)] are subgraphs of G and G/) and are partial (k — 1)-trees. We will be interested
in finding sub (k — 1)-trees of & trees and this problem is trivial by the result of [1] when
k = 2. Therefore, we assume that £ > 3. The following result characterizes the various
possibilities for H[V;;] in this case.

Lemma 2. Suppose that G isa k-tree, and S = V;; isa minimal separator of G corre-
sponding to thelink ij of thejunction-tree T. Inany (k — 1)-tree H C G either

1. Thereisau € S such that u is not connected to vertices in both V(9 \ S and
V) \ S. Then S\ {u} isaminimal separator in H and hence is complete.

2. Every vertexin S isconnected to verticesin both V() \ S and V() \ S. Then there
arevertices {z,y} C .S such that the edge H[S] ismissing only the edge {x, y}.
Further either H[V @] or H[V'(9)] does not contain a unchorded z-y path.

Proof. We consider two possibilities. In the first, there is some vertex v € .S such that v is
not connected to vertices in both (V) \ S and V/)\. Since the removal of S disconnects G,
the removal of S must also disconnect H. Therefore, S must contain a minimal separator
of H. Since H is a (k — 1)-tree, all minimal separators of H must contain k£ — 1 vertices
which must therefore be S\ {«}. This corresponds to case (1) above. Clearly this possiblity
can occur.

If there is no such u € S, then every vertex in S is connected to vertices in both V() \ .S
and VU \ S. If x € S is connected to some y; € V) \ Sand y; € VU \ S, then = is
contained in every minimal y; /y; separator (see [5]). Therefore, every vertex in S is part of
a minimal separator. Since each minimal separator contains k£ — 1 vertices, there must be at
least two distinct minimum separators contained in S. Let S, = S\ {z}and S, = S\ {y}
be two distinct minimal separators. We claim that H[S] contains all edges except the edge
{z,y}. To see this, note that if z,w € S, with z # w and {z,w} # {z,y} (as sets),
then either {z,w} C S, or {z,w} C S,. Since both S, and S, are complete in H, this
edge must be present in H. The edge {z,y} is not present in H[S] because all minimal
separators in H must be of size k — 1. Further, if both V(9 and V() contain an unchorded
path between z and y, then by joining the two paths at « and y, we get a unchorded cycle
in H which contradicts the fact that H is triangulated. O

Therefore, we may associate (’2“) -2 4+ 2 - k constraints with each separator V;; of G as
follows. There are k possible constraints corresponding to case (1) above (one for each
choice of x), and (’2“) - 2 choices corresponding to case (2) above. This is because for each
pair {z,y} corresponding to the missing edge, we have either V(*) contains no unchorded
xy paths or V') contains no unchorded zy paths. More explicitly, we can encode the set
of constraints Cj, associated with each separator .S corresponding to an interior node M of
the decomposition tree as follows: Cyr = {(z,y,s) :x € S,y € S,s € {i,j}}. fy = =,
then this corresponds to case (1) of the above lemma. If s = 4, then « is connected only to
H® and if s = j, then x is connected only to H). If y # x, then this corresponds to case
(2) in the above lemma. If s = 4, then H(%) does not contain any unchorded path between
x and y, and there is no constraint on H), Similarly if s = j, then H) does not contain
any unchorded path between = and y, and there is no constraint on H ().

Now suppose that H®) and H) are triangulated subgraphs of G and GU) respectively,
then it is clear that if H() and H) both satisfy the same constraint they must match up
on the common vertices V;;. Therefore to splice together two solutions corresponding to
the same constraint, we only need to check that the graph obtained by splicing the graphs
is triangulated.

Lemma 3. Suppose that H*) and HY) are triangulated subgraphs of G*) and GU) re-
spectively such that both of them satisfy the same constraint as described above. Then the
graph H obtained by splicing H*) and HY) together istriangulated.

Proof. Suppose that both H(? and H) are both triangulated and both satisfy the same
constraint. If both H() and H) satisfy the same constraint corresponding to case (1)
in Lemma 2 and H has an unchorded cycle, then this cycle must involve elements of both
H® and H"). Therefore, there must be two vertices of S\ {u} on the cycle, and hence this
cycle has a chord as S \ {u} is complete. This contradiction shows that H is triangulated.
So assume that both of them satisfy the constraint corresponding to case (2) of Lemma 2.
Then if H is not triangulated, there must be a ¢-cycle (for ¢ > 4) with no chord. Now, since
{x,y} is the only missing edge of S in H, and because H*) and H/) are individually
triangulated, the cycle must contain z, y and vertices of both V() \ S and V() \ S. We

may split this unchorded cycle into two unchorded paths, one contained in V' (*) and one in
V') thus violating our assumption that both H () and H (%) satisfy the same constraint. [

If | S| = k, then there are 2k + 2 - (5) € O(k?) € O(n?). We can use a divide and conquer
strategy to find the optimal sub (k — 1) tree once we have taken care of the base case, where
G isjust asingle clique (of k£ + 1) elements. However, for this case, it is easily checked that
any subgraph of G obtained by deleting exactly one edge resultsina (k — 1) tree, and every
sub (k—1)-tree results from this operation. Therefore, the optimal (k—1)-tree can be found
using Algorithm 1, and in this case, the complexity of Algorithm 1 is O(n(k + 1)2). This
procedure can be generalized to find the optimal sub (k — d)- tree for any fixed d. However,
the number of constraints grows exponentially with d (though it is still polynomial in n).
Therefore for small, fixed values of d, we can compute the optimal sub (k — d)-tree of G.
While we can compute (k — d)-trees of G by first going from a k tree to a (k — 1) tree, then
froma (k — 1)-tree to a (k — 2)-tree, and so on in a greedy fashion, this will not be optimal
in general. However, this might be a good algorithm to try when d is large.

3.2 Optimal triangulated subgraphswith |E(G)| — d edges

Suppose that we are interested in a (triangulated) subgraph of G that contains d fewer edges
that G does. That is, we want to find an optimal subgraph H C G such that |[E(H)| =
|E(G)| — d. Note that by the result of [4] there is always a triangulated subgraph with d
fewer edges (if d < |E(G)]). Two possibilities for finding such an optimal subgraph are

1. Use the procedure described in [4]. This is a greedy procedure which works in
d steps by deleting an edge at each step. At each state, the edge is picked from
the set of edges whose deletion leaves a triangulated graph. Then the edge which
causes the least increase in KL-divergence is picked at each stage.

2. For each possible subset A of E(G) of size d, whose deletion leaves a triangulated
graph, compute the KL divergence using the formula above, and then pick the
optimal one. Since there are ('#(“)1) such sets, this can be done in polynomial

time (in |V (G)|) when d is a constant.

The first greedy algorithm is not guaranteed to yield the optimal solution. The second takes
time that is O(n2¢). Now, let us solve this problem using the framework we’ve described.

Let H be the set of subgraphs of G which may be obtained by deletion of d
edges. For each M = ij € M corresponding to the separator V;;, let Cpy =

{ (l,rye,s,A) : l+r—c=d,sadbitstring, A € (E(GE/”D)}. The constraint repre-

sented by (I,r,c, A) is this : A is a set of d edges of G[V;;] that are missing in H, [edges
are missing from the left subgraph, and r edges are missing from the right subgraph. ¢ rep-
resents the double count, and so is subtracted from the total. If & is the size of the largest

clique, then the total number of such constraints is bounded by 2d - 2¢ - ((g)) € O(k?%)

which could be better than O(n2?) and is polynomial in [V'| when d is constant. See [10]
for additional details.

4 Conclusions

Algorithm 1 will compute the optimal H € H for the two examples discussed above and
is polynomial (for fixed constant d) even if k is O(n). In [10] a generalization is presented
which will allow finding the optimal solution for other classes of subgraphical models.
Now, we assume an oracle model for computing KL-divergences of probability distribu-
tions on vertex sets of cliques. It is clear that these KL-divergences can be computed

R « separator-tree for G;

for each vertex M of R in order of increasing height (bottom up) do

for each constraint ¢, of M do

if M isaninterior vertex of R corresponding to edge i; of the junction tree then
Let M; and M,. be the left and right children of M;
Pick constraint ¢; € Cypy, compatible with ¢), to minimize table[M;, ¢/];
Pick constraint ¢, € Cy,. compatible with ¢, to minimize table[M,., ¢,];
loss — D(Pg[M]|[Pu[M]);
table[M, cps] < table[M;, ¢;] + table[M.,., ¢,| — loss;

else
’ table[M, cys] < D(Pg[M]|| Py [M)]);

end

end

end
Algorithm 1: Finding optimal set of constraints

efficiently for distributions like Gaussians, but for discrete distributions this may not be
possible when £ is large. However even in this case this algorithm will result in only
polynomial calls to the oracle. The standard algorithm [3] which is exponential in the
treewidth will make O(2*) calls to this oracle. Therefore, when the cost of computing the
KL-divergence is large, this algorithm becomes even more attractive as it results in expo-
nential speedup over the standard algorithm. Alternatively, if we can compute approximate
KL-divergences, or approximately optimal solutions, then we can compute an approximate
solution by using the same algorithm.

References
[1] C. Chow and C. Liu, “Approximating discrete probability distributions with depen-
dence trees”, IEEE Transactions on Information Theory, v. 14, 1968, Pages 462—-467.

[2] F. Gavril, “Algorithms on clique separable graphs”, Discrete Mathematics v. 9 (1977),
pp. 159-165.

[3] R. E. Tarjan. “Decomposition by Clique Separators”, Discrete Mathematics, v. 55
(1985), pp. 221-232.

[4] U. Kjaerulff. “Reduction of computational complexity in Bayesian networks through
removal of weak dependencies”, Proceedings of the Tenth Annual Conference on
Uncertainty in Artificial Intelligence, pp. 374-382, 1994,

[5] T. Kloks, “Treewidth: Computations and Approximations”, Springer-Verlag, 1994,

[6] A. Darwiche and M. Hopkins. “Using recursive decomposition to construct elimina-
tion orders, jointrees and dtrees”, Technical Report D-122, Computer Science Dept.,
UCLA.

[7] S. Lauritzen. “Graphical Models”, Oxford University Press, Oxford, 1996.

[8] T. A. McKee and F. R. McMorris. “Topics in Intersection Graph Theory”, SIAM
Monographs on Discrete Mathematics and Applications, 1999.

[9] D. Kargerand N. Srebro. “Learning Markov networks: Maximum bounded tree-width
graphs.” In Symposium on Discrete Algorithms, 2001, Pages 391-401.

[10] M. Narasimhan and J. Bilmes. “Optimization on separator-clique trees.”, Technical
report UWEETR 2004-10, June 2004.

