
A Temporal Kernel-Based Model for Tracking
Hand-Movements from Neural Activities

Lavi Shpigelman12 Koby Crammer1 Rony Paz23 Eilon Vaadia23 Yoram Singer1
1 School of computer Science and Engineering

2 Interdisciplinary Center for Neural Computation
3 Dept. of Physiology, Hadassah Medical School
The Hebrew University Jerusalem, 91904, Israel

Email for correspondance: shpigi@cs.huji.ac.il

Abstract

We devise and experiment with a dynamical kernel-based system for
tracking hand movements from neural activity. The state of the system
corresponds to the hand location, velocity, and acceleration, while the
system’s input are the instantaneous spike rates. The system’s state dy-
namics is defined as a combination of a linear mapping from the previous
estimated state and a kernel-based mapping tailored for modeling neural
activities. In contrast to generative models, the activity-to-state mapping
is learned using discriminative methods by minimizing a noise-robust
loss function. We use this approach to predict hand trajectories on the
basis of neural activity in motor cortex of behaving monkeys and find
that the proposed approach is more accurate than both a static approach
based on support vector regression and the Kalman filter.

1 Introduction

The paper focuses on the problem of tracking hand movements, which constitute smooth
spatial trajectories, from spike trains of a neural population. We do so by devising a dynam-
ical system which employs a tailored kernel for spike trains along with a linear mapping
corresponding to the states’ dynamics. Consider a situation where a subject performs free
hand movements during a task that requires accurate space and time precision. In the lab,
it may be a constrained reaching task while in real life it may be an every day task such as
eating. We wish to track the hand position given only spike trains from a recorded neural
population. The rationale of such an undertaking is two fold. First, this task can be viewed
as a stem towards the development of a Brain Machine Interface (BMI) which gradually and
rapidly become a possible future solution for the motor disabled patients. Recent studies of
BMIs [13, 3, 10] (being on-line and feedback enabled) show that a relatively small number
of cortical units can be used to move a cursor or a robot effectively, even without genera-
tion of hand movements and that training of the subjects improves the overall success of
the BMIs. Second, an open loop (off-line) movement decoding (see e.g. [7, 1, 15, 11, 8]),
while inappropriate for BMIs, is computationally less expensive, easier to implement and
allows repeated analysis thus providing a handle to understandings of neural computations
in the brain.

Early studies [6] showed that the direction of arm movement is reflected by the population
vector of preferred directions weighted by current firing rates, suggesting that intended

movement is encoded in the firing rate which, in turn, is modulated by the angle between a
unit’s preferred direction (PD) and the intended direction. This linear regression approach
is still prevalent and is applied, with some variation of the learning methods, in closed and
open loop settings. There is relatively little work on the development of dedicated nonlinear
methods.

Both movement and neural activity are dynamic and can therefore be naturally modeled by
dynamical systems. Filtering methods often employ generative probabilistic models such
as the well known Kalman filter [16] or more neurally specialized models [1] in which a
cortical unit’s spike count is generated by a probability function of its underlying firing
rate which is tuned to movement parameters. The movement, being a smooth trajectory,
is modeled as a linear transition with (typically additive Gaussian) noise. These methods
have the advantage of being aware of the smooth nature of movement and provide models
of what neurons are tuned to. However, the requirement of describing a neural population’s
firing probability as a function of movement state is hard to satisfy without making costly
assumptions. The most prominent is the assumption of statistical independence of cells
given the movement.

Kernel based methods have been shown to achieve state of the art results in many applica-
tion domains. Discriminative kernel methods, such as Support Vector Regression (SVR)
forgo the task of modeling neuronal tuning functions. Furthermore, the construction of
kernel induced feature spaces, lends itself to efficient implementation of distance measures
over spike trains that are better suited to comparing two neural population trajectories than
the Euclidean distance in the original space of spike counts per bins [11, 5]. However,
SVR is a “static” method that does not take into account the smooth dynamics of the pre-
dicted movement trajectory which imposes a statistical dependency between consecutive
examples.

This paper introduces a kernel based regression method that incorporates linear dynamics
of the predicted trajectories. In Sec. 2 we formally describe the problem setting. We intro-
duce the movement tracking model and the associated learning framework in Sec. 3. The
resulting learning problem yields a new kernel for linear dynamical systems. We provide
an efficient calculation of this kernel and describe our dual space optimization method for
solving the learning problem. The experimental method is presented in Sec. 4. Results,
underscoring the merits of our algorithm are provided in Sec. 5 and conclusions are given
in Sec. 6.

2 Problem Setting

Our training set containsm trials. Each trial (typically indexed byi or j) consists of a pair

of movement and neural recordings, designated by
{

Yi,Oi
}

. Yi =
{

yi
t

}ti
end

t=1
is a time

series of movement state values andyi
t ∈ Rd is the movement state vector at timet in

trial i. We are interested in reconstructing position, however, for better modeling,yi
t may

be a vector of position, velocity and acceleration (as is the case in Sec. 4). This trajectory is

observed during model learning and is the inference target.Oi = {ot}
ti
end

t=1 is a time series
of neural spike counts andoi

t ∈ Rq is a vector of spike counts fromq cortical units at time
t. We wish to learn a functionzi

t = f
(

Oi
1:t

)

that is a good estimate (in a sense formalized
in the sequel) of the movementyi

t. Thus,f is a causal filtering method.

We confine ourselves to a causal setting since we plan to apply the proposed method in a
closed loop scenario where real-time output is required. The partition into separate trajecto-
ries is a natural one in a setting where a session is divided into many trials, each consisting
of one attempt at accomplishing the basic task (such as reaching movements to displayed
targets). In tasks that involve no hitting of objects, hand movements are typically smooth.

End point movement in small time steps is loosely approximated as having constant ac-
celeration. On the other hand, neural spike counts (which are typically measured in bins
of 50 − 100ms) vary greatly from one time step to the next. In summary, our goal is to
devise a dynamic mapping from sequences of neural activities ending at a given time to the
instantaneous hand movement characterization (location, velocity, and acceleration).

3 Movement Tracking Algorithm
Our regression method is defined as follows: given a seriesO ∈ Rq×tend of observations
and, possibly, an initial statey0, the predicted trajectoryZ ∈ Rd×tend is,

zt = Azt−1 + Wφ (ot) , tend ≥ t > 0 , (1)

where z0 = y0, A ∈ Rd×d is a matrix describing linear movement dynamics and
W ∈ Rd×q is a weight matrix.φ (ot) is a feature vector of the observed spike trains
at time t and is later replaced by a kernel operator (in the dual formulation to follow).
Thus, the state transition is a linear transformation of the previous state with the addition
of a non-linear effect of the observation.

Note that unfolding the recursion in Eq. (1) yieldszt = Aty0 +
∑t

k=1

(

At−kWφ (ok)
)

.
Assuming thatA describes stable dynamics (the real parts of the eigenvalues ofA are les
than 1), then the current prediction depends, in an exponentially decaying manner, on the
previous observations. We further assume thatA is fixed and wish to learnW (we describe
our choice ofA in Sec. 4). In addition,ot may also encompass a series of previous spike
counts in a window ending at timet (as is the case in Sec. 4). Also, note that this model (in
its non-kernelized version) has an algebraic form which is similar to the Kalman filter (to
which we compare our results later).

Primal Learning Problem: The optimization problem presented here is identical to the
standard SVR learning problem (see, for example [12]) with the exception thatzi

t is defined
as in Eq. (1) while in standard SVR,zt = Wφ (ot) (i.e. without the linear dynamics).
Given a training set of fully observed trials

{

Yi,Oi
}m

i=1
we define the learning problem

to be

min
W

1

2
‖W‖

2
+ c

m
∑

i=1

ti
end
∑

t=1

d
∑

s=1

∣

∣

(

zi
t

)

s
−

(

yi
t

)

s

∣

∣

ε
. (2)

Where‖W‖
2

=
∑

a,b (W)
2
ab (is the Forbenius norm). The second term is a sum of training

errors (in all trials, times and movement dimensions).| · |ε is theε insensitive loss and is
defined as|v|ε = max {0, |v| − ε}. The first term is a regularization term that promotes
small weights andc is a fixed constant providing a tradeoff between the regularization
term and the training error. Note that to compensate for different units and scales of the
movement dimensions one could either define a differentεs andcs for each dimension of
the movement or, conversely, scale thesth movement dimension. The tracking method,
combined with the optimization specified here, defines the complete algorithm. We name
this method the Discriminative Dynamic Tracker or DDT in short.

A Dual Solution: The derivation of the dual of the learning problem defined in Eq. (2)
is rather mundane (e.g. [12]) and is thus omitted. Briefly, we replace theε-loss with pairs
of slack variables. We then write a Lagrangian of the primal problem and replacezi

t with
its (less-standard) definition. We then differentiate the Lagrangian with respect to the slack
variables andW and obtain a dual optimization problem. We present the dual dual problem
in a top-down manner, starting with the general form and finishing with a kernel definition.
The form of the dual is

max
α,α∗

− 1
2 (α∗ − α)

T
G (α∗ − α) + (α∗ − α)

T
y − (α∗ + α)

T
ε

s.t. α,α∗ ∈ [0, c] . (3)

Note that the above expression conforms to the dual form of SVR. Let` equal the size of the
movement space (d), multiplied by the total number of time steps in all the training trajecto-
ries.α,α∗ ∈ R` are vectors of Lagrange multipliers,y ∈ R` is a column concatenation of

all the training set movement trajectories

[

(

y1
1

)T
· · ·

(

ym
tm
end

)T
]T

, ε = [ε, . . . , ε]T ∈ R`

andG ∈ R`×` is a Gram matrix (vT denotes transposition). One obvious difference be-
tween our setting and the standard SVR lies within the size of the vectors and Gram matrix.
In addition, a major difference is the definition ofG. We defineG here in a hierarchical
manner. Leti, j ∈ {1, . . . ,m} be trajectory (trial) indexes.G is built from blocks indexed
by Gij , which are in turn made from basic blocks, indexed byK

ij
tq as follows

G =







G11 · · · G1m

...
. . .

...
Gm1 · · · Gmm






, Gij =









K
ij
11 · · · K

ij
1tj

...
. . .

...
K

ij

ti
end

1
· · · K

ij

ti
end

t
j

end









,

where blockGij refers to a pair of trials (i andj). Finally Each basic block,Kij
tq refers to a

pair of time stepst andq in trajectoriesi andj respectively.tiend, t
j
end are the time lengths

of trials i andj. Basic blocks are defined as

K
ij
tq =

t
∑

r=1

q
∑

s=1

(

At−r
)

kij
rs

(

Aq−s
)T

, (4)

wherekij
rs = k

(

oi
r,o

j
s

)

is a (freely chosen) basic kernel between the two neural observa-
tionsoi

r andoj
s at timesr ands in trials i andj respectively. For an explanation of kernel

operators we refer the reader to [14] and mention that the kernel operator can be viewed
as computingφ

(

oi
r

)

· φ
(

oj
s

)

whereφ is a fixed mapping to some inner product space.
The choice of kernel (being the choice of feature space) reflects a modeling decision that
specifies how similarities between neural patterns are measured. The resulting dual form
of the tracker iszt =

∑

k αkGtk whereGt is the Gram matrix row of the new example.

It is therefore clear from Eq. (4) that the linear dynamic characteristics of DDT results in
a Gram matrix whose entries depend on previous observations. This dependency is ex-
ponentially decaying as the time difference between events in the trajectories grow. Note
that solution of the dual optimization problem in Eq. (3) can be calculated by any stan-
dard quadratic programming optimization tool. Also, note that direct calculation ofG is
inefficient. We describe an efficient method in the sequel.
Efficient Calculation of the Gram Matrix Simple, straight-forward calculation of the
Gram matrix is time consuming. To illustrate this, suppose each trial is of lengthtiend = n,
then calculation of each basic block would takeΘ(n2) summation steps. We now describe
a procedure based on dynamic-programming method for calculating the Gram matrix in a
constant number of operations for each basic block.

Omitting the indexing over trials to ease notation, we are interested in calculating the basic
block Ktq. First, defineBtq =

∑t

k=1 kkqA
t−k. the basic blockKtq can be recursively

calculated in three different ways:

Ktq = Kt(q−1)A
T + Btq (5)

Ktq = AK(t−1)q + (Bqt)
T (6)

Ktq = AK(t−1)(q−1)A
T + (Bqt)

T
+ Btq − ktq . (7)

Thus, by adding Eq. (5) to Eq. (6) and subtracting Eq. (7) we get

Ktq = AK(t−1)q + Kt(q−1)A
T − AK(t−1)(q−1)A

T + ktqI .

Btq (and the entailed summation) is eliminated in exchange for a2D dynamic program with
initial conditions:K11 = k11I , K1q = K1(q−1)A

T +k1qI , Kt1 = AK(t−1)1 +kt1I.

Table 1: MeanR
2, MAEε & MSE (across datasets, folds, hands and directions) for each algorithm.

R2 MAEε MSE
Algorithm pos. vel. accl. pos. vel. accl. pos. vel. accl.
Kalman filter 0.64 0.58 0.30 0.40 0.15 0.37 0.78 0.27 1.16
DDT-linear 0.59 0.49 0.17 0.63 0.41 0.58 0.97 0.50 1.23
SVR-Spikernel 0.61 0.64 0.37 0.44 0.14 0.34 0.76 0.20 0.98
DDT-Spikernal 0.73 0.67 0.40 0.37 0.14 0.34 0.50 0.16 0.91

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Kalman filter, R2 Scores

D
D

T
−

S
pi

ke
rn

el
, R

2 S
co

re
s

0 0.2 0.4 0.6 0.8 1
DDT−linear, R2 Scores

0 0.2 0.4 0.6 0.8 1

SVR−Spikernel, R2 Scores

left hand, X dir.

left hand, Y dir.

right hand, X dir.

right hand, Y dir.

Figure 1: Correlation coefficients (R2, of predicted and observed hand positions) comparisons of
the DDT-Spikernel versus the Kalman filter (left), DDT-linear (center) and SVR-Spikernel (right).
Each data point is theR2 values obtained by the DDT-Spikernel and by another method in one fold
of one of the datasets for one of the two axes of movement (circle / square) and one of the hands
(filled/non-filled). Results above the diagonals are cases were the DDT-Spikernel outperformes.

Suggested Optimization Method. One possible way to solve the optimization problem
(essentially, a modification of the method described in [4] for classification) is to sequen-
tially solve a reduced problem with respect to a single constraint at a time. Define:

δi =

∣

∣

∣

∣

∣

∣

∑

j

(

α∗
j − αj

)

Gij − yi

∣

∣

∣

∣

∣

∣

ε

− min
αi,α

∗

i
∈[0,c]

∣

∣

∣

∣

∣

∣

∑

j

(

α∗
j − αj

)

Gij − yi

∣

∣

∣

∣

∣

∣

ε

.

Thenδi is the amount ofε-insensitive error that can be corrected for examplei by keeping
all α

(∗)
j 6=i constant and changingα(∗)

i . Optimality is reached by iteratively choosing the

example with the largestδi and changing itsα(∗)
i within the [0, c] limits to minimize the

error for this example.

4 Experimental Setting

The data used in this work was recorded from the primary motor cortex of a Rhesus
(Macaca Mulatta) monkey (˜4.5 kg). The monkey sat in a dark chamber, and up to 8
electrodes were introduced into MI area of each hemisphere. The electrode signals were
amplified, filtered and sorted. The data used in this report was recorded on 8 different days
and includes hand positions, sampled at 500Hz, spike times of single units (isolated by sig-
nal fit to a series of windows) and of multi units (detection by threshold crossing) sampled
at 1ms precision. The monkey used two planar-movement manipulanda to control 2 cur-
sors on the screen to perform a center-out reaching task. Each trial began when the monkey
centered both cursors on a central circle. Either cursor could turn green, indicating the hand
to be used in the trial. Then, one of eight targets appeared (’go signal’), the center circle
disappeared and the monkey had to move and reach the target to receive liquid reward. The
number of multi-unit channels ranged from 5 to 15, the number of single units was 20-27
and the average total was 34 units per dataset. The average spike rate per channel was 8.2
spikes/sec. More information on the recordings can be found in [9].

DDT (Spikernel)

DDT (Linear)

100%

SVR (Spikernel)

100% Kalman Filter

88.1%

62.5%

78.12%

63.75%

DDT (Spikernel)

DDT (Linear)

99.4%

SVR (Spikernel)

75%

Kalman Filter

87.5%

96.3%

80.0%

86.8%

DDT (Spikernel)

DDT (Linear)

98.7%

SVR (Spikernel)

78.7%

Kalman Filter

91.88%

95.6%

86.3%

84.4%

Figure 2: Comparison ofR2-performance between algorithms. Each algorithm is represented by a
vertex. The weight of an edge between two algorithms is the fraction of tests in which the algorithm
on top achieves higherR2 score than the other. A bold edge indicates a fraction higher than95%.
Graphs from left to right are for position, velocity, and acceleration respectively.

The results that we present here refer to prediction of instantaneous hand movements during
the period from ’Go Signal’ to ’Target Reach’ times of both hands in successful trials.
Note that some of the trials required movement of the left hand while keeping the right
hand steady and vise versa. Therefore, although we considered only movement periods
of the trials, we had to predict both movement and non-movement for each hand. The
cumulative time length of all the datasets was about 67 minutes. Since the correlation
between the movements of the two hands tend to zero - we predicted movement for each
hand separately, choosing the movement space to be[x, y, vx, vy, ax, ay]

T for each of the
hands (preliminary results using only[x, y, vx, vy]

T were less accurate).

We preprocessed the spike trains into spike counts in a running windows of100ms (choice
of window size is based on previous experience [11]). Hand position, velocity and acceler-
ation were calculated using the 500Hz recordings. Both spike counts and hand movement
were then sampled at steps of100ms (preliminary results with step size50ms were negli-
gibly different for all algorithms). A labeled example

{

yi
t,o

i
t

}

for time t in trial i consisted
of the previous10 bins of population spike counts and the state, as a6D vector for the left
or right hand. Two such consecutive examples would than have9 time bins of spike count
overlap. For example, the number of cortical unitsq in the first dataset was43 (27 single
and16 multiple) and the total length of all the trials that were used in that dataset is 529
seconds. Hence in that session there are 5290 consecutive examples where each is a43×10
matrix of spike counts along with two6D vectors of end point movement.

In order to run our algorithm we had to choose base kernels, their parameters,A andc (and
θ, to be introduced below). We used the Spikernel [11], a kernel designed to be used with
spike rate patterns, and the simple dot product (i.e. linear regression). Kernel parmeters and
c were chosen (and subsequently held fixed) by 5 fold cross validation over half of the first
dataset only. We compared DDT with the Spikernel and with the linear kernel to standard
SVR using the Spikernel and the Kalman filter. We also obtained tracking results using
both DDT and SVR with the standard exponential kernel. These results were slightly less
accurate on average than with the Spikernel and are therefore omitted here. The Kalman
filter was learned assuming the standard state space model (yt = Ayt−1 + η , ot =
Hyt+ξ, whereη, ξ are white Gaussian noise with appropriate correlation matrices) such as
in [16]. y belonged to the same6D state space as described earlier. To ease the comparison
- the same matrixA that was learned for the Kalman filter was used in our algorithm
(though we show that it is not optimal for DDT), multiplied by a scaling parameterθ. This
parameter was selected to produce bestposition results on the training set. The selectedθ
value is0.8.

The figures that we show in Sec. 5 are of test results in 5 fold cross validation on the rest
of the data. Each of the 8 remaining datasets was divided into 5 folds. 4/5 were used for

R2

P
os

iti
on

V
el

oc
ity

θ

A
cc

el
er

at
io

n

MAE

θ

MSE

θ θ

Support

 6K

 8K

10K

12K

14K

Figure 3: Effect of θ on R
2, MAEε ,MSE and

number of support vectors.

po
si

tio
n

X Y

ve
lo

ci
ty

ac
ce

le
ra

tio
n

Actual
DDT−Spikernel
SVR−Spikernel

Figure 4: Sample of tracking with the DDT-
Spikernel and the SVR-Spikernel.

training (with the parameters obtained previously and the remaining 1/5 as test set). This
process was repeated 5 times for each hand. Altogether we had8sets× 5folds × 2hands= 80
folds.

5 Results
We begin by showing average results across all datasets, folds, hands and X/Y directions for
the four algorithms that are compared. Table. 1 shows mean Correlation Coefficients (R2,
between recorded and predicted movement values), Meanε insensitive Absolute Errors
(MAEε) and Mean Square Errors (MSE).R2 is a standard performance measure, MAEε is
the error minimized by DDT (subject to the regularization term) and MSE is minimized by
the Kalman filter. Under all the above measures the DDT-Spikernel outperforms the rest
with the SVR-Spikernel and the Kalman Filter alternating in second place.

To understand whether the performance differences are significant we look at the distribu-
tion of position (X and Y)R2 values at each of the separate tests (160 altogether). Figure 1
shows scatter plots ofR2 results for position predictions. Each plot compares the DDT-
Spikernel (on the Y axis) with one of the other three algorithms (on the X axes). It is
clear that in spite large differences in accuracy across datasets, the algorithm pairs achieve
similar success with the DDT-Spikernel achieving a betterR2 score in almost all cases.

To summarize the significance ofR2 differences we computed the number of tests in which
one algorithm achieved a higherR2 value than another algorithm (for all pairs, in each of
the position, velocity and acceleration categories). The results of this tournament between
the algorithms are presented in Figure 2 as winning percentages. The graphs produce a
ranking of the algorithms and the percentages are the significances of the ranking between
pairs. The DDT-Spikernel is significantly better then the rest in tracking position.

The matrixA in use is not optimal for our algorithm. The choice ofθ scales its effect. When
θ = 0 we get the standard SVR algorithm (without state dynamics). To illustrate the effect
of θ we present in Figure 3 the mean (over 5 folds, X/Y direction and hand)R2 results on
the first dataset as a function ofθ. It is clear that the value chosen to minimize position error
is not optimal for minimizing velocity and acceleration errors. Another important effect of
θ is the number of the support patterns in the learned model, which drops considerably
(by about one third) when the effect of the dynamics is increased. This means that more
training points fall strictly within theε-tube in training, suggesting that the kernel which
tacitly results from the dynamical model is better suited for the problem. Lastly, we show a
sample of test tracking results for the DDT-Spikernel and SVR-Spikernel in Figure 4. Note
that the acceleration values are not smooth and are, therefore, least aided by the dynamics of
the model. However, adding acceleration to the model improves the prediction of position.

6 Conclusion
We described and reported experiments with a dynamical system that combines a linear
state mapping with a nonlinear observation-to-state mapping. The estimation of the sys-
tem’s parameters is transformed to a dual representation and yields a novel kernel for tem-
poral modelling. When a linear kernel is used, the DDT system has a similar form to the
Kalman filter ast → ∞. However, the system’s parameters are set so as to minimize the
regularizedε-insensitive`1 loss between state trajectories. DDT also bares similarity to
SVR, which employs the same loss yet without the state dynamics. Our experiments indi-
cate that by combining a kernel-induced feature space, linear state dynamics, and using a
robust loss we are able to leverage the trajectory prediction accuracy and outperform com-
mon approaches. Our next step toward an accurate brain-machine interface for predicting
hand movements is the development of a learning procedure for the state dynamic mapping
A and further developments of neurally motivated and compact representations.

Acknowledgments This study was partly supported by a center of excellence grant (8006/00)
administered by the ISF, BMBF-DIP, by the U.S. Israel BSF and by the IST Programme of the Eu-
ropean Community, under the PASCAL Network of Excellence, IST-2002-506778. L.S. is supported
by a Horowitz fellowship.

References
[1] A. E. Brockwell, A. L. Rojas, and R. E. Kass. Recursive bayesian decoding of motor cortical

signals by particle filtering.Journal of Neurophysiology, 91:1899–1907, 2004.
[2] E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson. A statistical paradigm for

neural spike train decoding applied to position prediction from ensemble firing patterns of rat
hippocampal place cells.Journal of Neuroscience, 18(7411–7425), 1998.

[3] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F. Dimitrov,
P. G. Patil, C. S. Henriques, and M. A. L. Nicolelis. Learning to control a brain-machine
interface for reaching and grasping by primates.PLOS Biology, 1(2):001–016, 2003.

[4] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines.Jornal of Machine Learning Research, 2:265–292, 2001.

[5] J. Eichhorn, A. Tolias, A. Zien, M. Kuss, C. E. Rasmussen, J. Weston, N. Logothetis, and
B. Scḧolkopf. Prediction on spike data using kernel algorithms. InNIPS 16. MIT Press, 2004.

[6] A. P. Georgopoulos, J. Kalaska, and J. Massey. Spatial coding of movements: A hypothesis
concerning the coding of movement direction by motor cortical populations.Experimental
Brain Research (Supp), 7:327–336, 1983.

[7] R. E. Isaacs, D. J. Weber, and A. B. Schwartz. Work toward real-time control of a cortical
neural prothesis.IEEE Trans Rehabil Eng, 8(196–198), 2000.

[8] C. Mehring, J. Rickert, E. Vaadia, S. C. de Oliveira, A. Aertsen, and S. Rotter. Inference of
hand movements from local field potentials in monkey motor cortex.Nature Neur., 6(12), 2003.

[9] R. Paz, T. Boraud, C. Natan, H. Bergman, and E. Vaadia. Preparatory activity in motor cortex
reflects learning of local visuomotor skills.Nature Neur., 6(8):882–890, August 2003.

[10] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue. Instant
neural control of a movement signal.Nature, 416:141–142, March 2002.

[11] L. Shpigelman, Y. Singer, R. Paz, and E. Vaadia. Spikernels: Embedding spiking neurons in
inner product spaces. InNIPS 15, Cambridge, MA, 2003. MIT Press.

[12] A. Smola and B. Scholkop. A tutorial on support vector regressio. InNeuroCOLT2 Technical
Report, 1998.

[13] S. I. H. Tillery, D. M. Taylor, and A. B. Schwartz. Training in cortical control of neuropros-
thetic devices improves signal extraction from small neuronal ensembles.Reviews in the Neu-
rosciences, 14:107–119, 2003.

[14] V. Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y., 1995.
[15] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin, J. Kim,

J. Biggs, M. A. Srinivasan, and M. A. Nicolelis. Real-time prediction of hand trajectory by
ensembles of cortical neurons in primates.Nature, 408(16), November 2000.

[16] W. Wu, M. J. Black, Y. Gao, E. Bienenstock, M. Serruya, and J. P. Donoghue. Inferring hand
motion from multi-cell recordings in motor cortex using a kalman filter. InSAB02, pages 66–73,
Edinburgh, Scotland (UK), 2002.

