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Abstract

We propose the hierarchical Dirichlet process (HDP), a nonparametric
Bayesian model for clustering problems involving multiple groups of
data. Each group of data is modeled with a mixture, with the number of
components being open-ended and inferred automatically by the model.
Further, components can be shared across groups, allowing dependencies
across groups to be modeled effectively as well as conferring generaliza-
tion to new groups. Such grouped clustering problems occur often in
practice, e.g. in the problem of topic discovery in document corpora. We
report experimental results on three text corpora showing the effective
and superior performance of the HDP over previous models.

1 Introduction

One of the most significant conceptual and practical tools in the Bayesian paradigm is
the notion of ahierarchical model. Building on the notion that a parameter is a random
variable, hierarchical models have applications to a variety of forms of grouped or relational
data and to general problems involving “multi-task learning” or “learning to learn.” A
simple and classical example is the Gaussian means problem, in which a grand meanµ0

is drawn from some distribution, a set ofK means are then drawn independently from a
Gaussian with meanµ0, and data are subsequently drawn independently fromK Gaussian
distributions with these means. The posterior distribution based on these data couples the
means, such that posterior estimates of the means are shrunk towards each other. The
estimates “share statistical strength,” a notion that can be made precise within both the
Bayesian and the frequentist paradigms.

Here we consider the application of hierarchical Bayesian ideas to a problem in “multi-task
learning” in which the “tasks” are clustering problems, and our goal is to share clusters
among multiple, related clustering problems. We are motivated by the task of discovering
topics in document corpora [1]. A topic (i.e., a cluster) is a distribution across words while
documents are viewed as distributions across topics. We want to discover topics that are
common across multiple documents in the same corpus, as well as across multiple corpora.

Our work is based on a tool from nonparametric Bayesian analysis known as theDirichlet
process(DP) mixture model [2, 3]. Skirting technical definitions for now, “nonparametric”



can be understood simply as implying that the number of clusters is open-ended. Indeed,
at each step of generating data points, a DP mixture model can either assign the data point
to a previously-generated cluster or can start a new cluster. The number of clusters is a
random variable whose mean grows at rate logarithmic in the number of data points.

Extending the DP mixture model framework to the setting of multiple related clustering
problems, we will be able to make the (realistic) assumption that we do not know the
number of clusters a priori in any of the problems, nor do we know how clusters should be
shared among the problems.

When generating a new cluster, a DP mixture model selects the parameters for the cluster
(e.g., in the case of Gaussian mixtures, the mean and covariance matrix) from a distribution
G0—the base distribution. So as to allow any possible parameter value, the distribution
G0 is often assumed to be a smooth distribution (i.e., non-atomic). Unfortunately, if we
now wish to extend DP mixtures to groups of clustering problems, the assumption thatG0

is smooth conflicts with the goal of sharing clusters among groups. That is, even if each
group shares the same underlying base distributionG0, the smoothness ofG0 implies that
they will generate distinct cluster parameters (with probability one). We will show that this
problem can be resolved by taking a hierarchical Bayesian approach. We present a notion
of ahierarchical Dirichlet process(HDP) in which the base distributionG0 for a set of DPs
is itself a draw from a DP. This turns out to provide an elegant and simple solution to the
problem of sharing clusters among multiple clustering problems.

The paper is organized as follows. In Section 2, we provide the basic technical definition
of DPs and discuss related representations involving stick-breaking processes and Chinese
restaurant processes. Section 3 then introduces the HDP, motivated by the requirement
of a more powerful formalism for the grouped data setting. As for the DP, we present
analogous stick-breaking and Chinese restaurant representations for the HDP. We present
empirical results on a number of text corpora in Section 5, demonstrating various aspects of
the HDP including its nonparametric nature, hierarchical nature, and the ease with which
the framework can be applied to other realms such as hidden Markov models.

2 Dirichlet Processes

The Dirichlet process (DP) and the DP mixture model are mainstays of nonparametric
Bayesian statistics (see, e.g., [3]). They have also begun to be seen in applications in ma-
chine learning (e.g., [7, 8, 9]). In this section we give a brief overview with an eye towards
generalization to HDPs. We begin with the definition of DPs [4]. Let(Θ,B) be a measur-
able space, withG0 a probability measure on the space, and letα0 be a positive real number.
A Dirichlet processis the distribution of a random probability measureG over(Θ,B) such
that, for any finite partition(A1, . . . , Ar) of Θ, the random vector(G(A1), . . . , G(Ar)) is
distributed as a finite-dimensional Dirichlet distribution:

(G(A1), . . . , G(Ar)) ∼ Dir
(

α0G0(A1), . . . , α0G0(Ar)
)

. (1)

We writeG ∼ DP(α0, G0) if G is a random probability measure distributed according to
a DP. We callG0 the base measure ofG, andα0 the concentration parameter.

The DP can be used in the mixture model setting in the following way. Consider a set
of data,x = (x1, . . . , xn), assumed exchangeable. Given a drawG ∼ DP(α0, G0),
independently drawn latent factorsfrom G: φi ∼ G. Then, for eachi = 1, . . . , n,
drawxi ∼ F (φi), for a distributionF . This setup is referred to as aDP mixture model.

If the factorsφi were all distinct, then this setup would yield an (uninteresting) mixture
model withn components. In fact, the DP exhibits an importantclustering property, such
that the drawsφi are generallynot distinct. Rather, the number of distinct values grows as
O(log n), and it is this that defines the random number of mixture components.



There are several perspectives on the DP that help to understand this clustering property.
In this paper we will refer to two: theChinese restaurant process(CRP), and thestick-
breaking process. The CRP is a distribution on partitions that directly captures the cluster-
ing of draws from a DP via a metaphor in which customers share tables in a Chinese restau-
rant [5]. As we will see in Section 4, the CRP refers to properties of the joint distribution
of the factors{φi}. The stick-breaking process, on the other hand, refers to properties of
G, and directly reveals its discrete nature [6]. Fork = 1, 2 . . ., let:

θk ∼ G0 β′

k ∼ Beta(1, α0) βk = β′

k

∏k−1
l=1 (1 − β′

k). (2)

Then with probability one the random measure defined byG =
∑

∞

k=1 βkδθk
is a sample

from DP(α0, G0). The construction forβ1, β2, . . . in (2) can be understood as taking a
stick of unit length, and repeatedly breaking off segments of lengthβk. The stick-breaking
construction shows that DP mixture models can be viewed as mixture models with a count-
ably infinite number of components. To see this, identify eachθk as the parameter of the
kth mixture component, with mixing proportion given byβk.

3 Hierarchical Dirichlet Processes

We will introduce thehierarchical Dirichlet process(HDP) in this section. First we de-
scribe the general setting in which the HDP is most useful—that ofgrouped data. We
assume that we haveJ groups of data, each consisting ofnj data points(xj1, . . . , xjnj

).
We assume that the data points in each group are exchangeable, and are to be modeled with
a mixture model. While each mixture model has mixing proportions specific to the group,
we require that the different groups share the same set of mixture components. The idea is
that while different groups have different characteristics given by a different combination
of mixing proportions, using the same set of mixture components allows statistical strength
to be shared across groups, and allows generalization to new groups.

The HDP is a nonparametric prior which allows the mixture models to share components.
It is a distribution over a set of random probability measures over(Θ,B): one probability
measureGj for each groupj, and a global probability measureG0. The global measureG0

is distributed asDP(γ,H), with H the base measure andγ the concentration parameter,
while eachGj is conditionally independent givenG0, with distributionGj ∼ DP(α0, G0).
To complete the description of the HDP mixture model, we associate eachxji with a factor
φji, with distributions given byF (φji) andGj respectively. The overall model is given in
Figure 1 left, with conditional distributions:

G0 | γ,H ∼ DP(γ,H) Gj |α,G0 ∼ DP(α0, G0) (3)

φji |Gj ∼ Gj xji |φji ∼ F (φji) . (4)

The stick-breaking construction (2) shows that a draw ofG0 can be expressed as a weighted
sum of point masses:G0 =

∑

∞

k=1 βkδθk
. This fact thatG0 is atomic plays an important

role in ensuring that mixture components are shared across different groups. SinceG0 is
the base distribution for the individualGj ’s, (2) again shows that the atoms of the individual
Gj are samples fromG0. In particular, sinceG0 places non-zero mass only on the atoms
θ = (θk)∞k=1, the atoms ofGj must also come fromθ, hence we may write:

G0 =
∑

∞

k=1 βkδθk
Gj =

∑

∞

k=1 πjkδθk
. (5)

Identifyingθk as the parameters of thekth mixture component, we see that each submodel
corresponding to distinct groups share the same set of mixture components, but have dif-
fering mixing proportions,πj = (πjk)∞k=1.

Finally, it is useful to explicitly describe the relationships between the mixing proportions
β and(πj)

J
j=1. Details are provided in [10]. Note that the weightsπj are conditionally in-

dependent givenβ since eachGj is independent givenG0. Applying (1) to finite partitions
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Figure 1:Left: graphical model of an example HDP mixture model with 3 groups. Corresponding
to each DP node we also plot a sample draw from the DP using the stick-breaking construction.
Right: an instantiation of the CRF representation for the 3 group HDP. Each of the 3 restaurants has
customers sitting around tables, and each table is served a dish (which corresponds to customers in
the Chinese restaurant for the global DP).

of θ, we getπj ∼ DP(α0,β), where we interpretβ andπj as probability measures over
the positive integers. Henceβ is simply the putative mixing proportion over the groups.
We may in fact obtain an explicit stick-breaking construction for theπj ’s as well. Applying
(1) to partitions({1, . . . , k − 1}, {k}, {k+ 1, . . .}) of positive integers, we have:

π′

jk ∼ Beta
(

α0βk, α0

(

1 −
∑k

l=1 βl

))

πjk = π′

jk

∏k−1
l=1 (1 − π′

jl) . (6)

4 The Chinese Restaurant Franchise

We describe an alternative view of the HDP based directly upon the distribution a HDP in-
duces on the samplesφji, where we marginalize outG0 andGj ’s. This view directly leads
to an efficient Gibbs sampler for HDP mixture models, which is detailed in the appendix.
Consider, for one groupj, the distribution ofφj1, . . . , φjnj

as we marginalize outGj . Re-
call that sinceGj ∼ DP(α0, G0) we can describe this distribution by describing how to
generateφj1, . . . , φjnj

using the CRP. Imaginenj customers (each corresponds to aφji)
at a Chinese restaurant with an unbounded number of tables. The first customer sits at the
first table. A subsequent customer sits at an occupied table with probability proportional
to the number of customers already there, or at the next unoccupied table with probability
proportional toα0. Suppose customeri sat at tabletji. The conditional distributions are:

tji | tj1, . . . , tji−1, α0 ∼
∑

t

njt
P

t′
njt′+α0

δt + α0
P

t′
njt′+α0

δtnew , (7)

wherenjt is the number of customers currently at tablet. Once all customers have sat down
the seating plan corresponds to a partition ofφj1, . . . , φjnj

. This is an exchangeable pro-
cess in that the probability of a partition does not depend on the order in which customers
sit down. Now we associate with tablet a drawψjt fromG0, and assignφji = ψjtji

.

Performing this process independently for each groupj, we have now integrated out all the
Gj ’s, and have an assignment of eachφji to a sampleψjtji

from G0, with the partition
structures given by CRPs. Notice now that allψjt’s are simply i.i.d. draws fromG0, which
is again distributed according toDP(γ,H), so we may apply the same CRP partitioning
process to theψjt’s. Let the customer associated withψjt sit at tablekjt. We have:

kjt | k11, . . . , k1n1
, k21, . . . , kjt−1, γ ∼

∑

k

mk
P

k′ mjk′+γ
δk + γ

P

k′ mk′+α0

δknew . (8)
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Figure 2:Left: comparison of LDA and HDP mixture. Results are averaged over 10 runs, with error
bars being 1 standard error. Right: histogram of the number of topics the HDP mixture used over 100
posterior samples.

Finally we associate with tablek a drawθk fromH and assignψjt = θkjt
. This completes

the generative process for theφji’s, where we marginalize outG0 andGj ’s. We call this
generative process theChinese restaurant franchise(CRF). The metaphor is as follows: we
haveJ restaurants, each withnj customers (φji’s), who sit at tables (ψjt’s). Now each table
is served a dish (θk ’s) from a menu common to all restaurants. The customers are sociable,
prefering large tables with many customers present, and also prefer popular dishes.

5 Experiments

We describe 3 experiments in this section to highlight the various aspects of the HDP: its
nonparametric nature; its hierarchical nature; and the ease with which we can apply the
framework to other models, specifically the HMM.

Nematode biology abstracts. To demonstrate the strength of the nonparametric approach
as exemplified by the HDP mixture, we compared it againstlatent Dirichlet allocation
(LDA), which is a parametric model similar in structure to the HDP [1]. In particular,
we applied both models to a corpus of nematode biology abstracts1, evaluating the per-
plexity of both models on held out abstracts. Here abstracts correspond to groups, words
correspond to observations, and topics correspond to mixture components, and exchange-
ability correspond to the typical bag-of-words assumption. In order to study specifically the
nonparametric nature of the HDP, we used the same experimental setup for both models2,
except that in LDA we had to vary the number of topics used between 10 and 120, while
the HDP obtained posterior samples over this automatically.

The results are shown in Figure 2. LDA performs best using between 50 and 80 topics,
while the HDP performed just as well as these. Further, the posterior over the number of
topics used by HDP is consistent with this range. Notice however that the HDP infers the
number of topics automatically, while LDA requires some method of model selection.

NIPS sections. We applied HDP mixture models to a dataset of NIPS 1-12 papers orga-
nized into sections3. To highlight the transfer of learning achievable with the HDP, we

1Available athttp://elegans.swmed.edu/wli/cgcbib. There are 5838 abstracts in total. After removing
standard stop words and words appearing less than 10 times, we are left with 476441 words in total
and a vocabulary size of 5699.

2In both models, we used a symmetric Dirichlet distribution with weights of0.5 for the priorH
over topic distributions, while the concentration parameters are integrated out using a vague gamma
prior. Gibbs sampling using the CRF is used, while the concentration parameters are sampled using
a method described in [10]. This also applies to the NIPS sections experiment on next page.

3To ensure we are dealing with informative words in the documents, we culled stop words as well
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Figure 3: Left: perplexity of test VS documents given training documents from VS and another
section for 3 different models. Curves shown are averaged over the other sections and 5 runs. Right:
perplexity of test VS documents given LT, AA and AP documents respectively, using M3, averaged
over 5 runs. In both, the error bars are 1 standard error.

show improvements to the modeling of a section when the model is also given documents
from another section. Our test section is always the VS (vision sciences) section, while
the additional section is varied across the other eight. The training set always consist of
80 documents from the other section (so that larger sections like AA (algorithms and ar-
chitecures) do not get an unfair advantage), plus between 0 and 80 documents from VS.
There are 47 test documents, which are held fixed as we vary over the other section and the
numberN of training VS documents. We compared 3 different models for this task. The
first model (M1) simply ignores documents from the additional section, and uses a HDP to
model the VS documents. It serves as a baseline. The second model (M2) uses a HDP mix-
ture model, with one group per document, but lumping together training documents from
both sections. The third model (M3) takes a hierarchical approach and models each section
separately using a HDP mixture model, and places another DP prior over the common base
distributions for both submodels4.

As we see in Figure 3 left, the more hierarchical approach of M3 performs best, with per-
plexity decreasing drastically with modest values ofN , while M1 does worst for smallN .
However with increasingN , M1 improves until it is competitive with M3 but M2 does
worst. This is because M2 lumps all the documents together, so is not able to differentiate
between the sections, as a result the influence of documents from the other section is un-
duly strong. This result confirms that the hierarchical approach to the transfer-of-learning
problem is a useful one, as it allows useful information to be transfered to a new task (here
the modeling of a new section), without the data from the previous tasks overwhelming
those in the new task.

We also looked at the performance of the M3 model on VS documents given specific other
sections. This is shown in Figure 3 right. As expected, the performance is worst given LT
(learning theory), and improves as we move to AA and AP (applications). In Table 1 we
show the topics pertinent to VS discovered by the M3 model. First we trained the model
on all documents from the other section. Then, keeping the assignments of words to topics
fixed in the other section, we introduced VS documents and the model decides to reuse
some topics from the other section, as well as create new ones. The topics reused by VS
documents confirm to our expectations of the overlap between VS and other sections.

as words occurring more than 4000 or less than 50 times in the documents. As sections differ over
the years, we assigned by hand the various sections to one of 9 prototypical sections: CS, NS, LT,
AA, IM, SP, VS, AP and CN.

4Though we have only described the 2 layer HDP the 3 layer extension is straightforward. In
fact on our websitehttp://www.cs.berkeley.edu/˜ywteh/research/npbayes we have an implementation of the
general case where DPs are coupled hierarchically in a tree-structured model.



CS NS LT AA IM SP AP CN
task
representation
pattern
processing
trained
representations
three process
unit patterns

cells cell
activity
response
neuron visual
patterns
pattern single
fig

signal layer
gaussian cells
fig nonlinearity
nonlinear rate
eq cell

algorithms test
approach
methods based
point problems
form large
paper

processing
pattern
approach
architecture
single shows
simple based
large control

visual images
video language
image pixel
acoustic delta
lowpass flow

approach
based trained
test layer
features table
classification
rate paper

ii tree pomdp
observable
strategy class
stochastic
history
strategies
density

examples
concept
similarity
bayesian
hypotheses
generalization
numbers
positive classes
hypothesis

visual cells
cortical
orientation
receptive
contrast spatial
cortex stimulus
tuning

large examples
form point see
parameter
consider
random small
optimal

distance
tangent image
images
transformation
transformations
pattern vectors
convolution
simard

motion visual
velocity flow
target chip eye
smooth
direction optical

signals
separation
signal sources
source matrix
blind mixing
gradient eq

image images
face similarity
pixel visual
database
matching facial
examples

policy optimal
reinforcement
control action
states actions
step problems
goal

Table 1: Topics shared between VS and the other sections. Shown are the two topics with most
numbers of VS words, but also with significant numbers of words from the other section.

Alice in Wonderland. The infinite hidden Markov model(iHMM) is a nonparametric
model for sequential data where the number of hidden states is open-ended and inferred
from data [11]. In [10] we show that the HDP framework can be applied to obtain a cleaner
formulation of the iHMM, providing effective new inference algorithms and potentially hi-
erarchical extensions. In fact the original iHMM paper [11] served as inspiration for this
work and first coined the term “hierarchical Dirichlet processes”—though their model is
not hierarchical in the Bayesian sense, involving priors upon priors, but is rather a set of
coupled urn models similar to the CRF. Here we report experimental comparisons of the
iHMM against other approaches on sentences taken from Lewis Carroll’sAlice’s Adven-
tures in Wonderland.

ML, MAP, and variational Bayesian (VB)
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Figure 4: Comparing iHMM (horizontal line)
versus ML, MAP and VB trained HMMs. Er-
ror bars are 1 standard error (those for iHMM too
small to see).

[12] models with numbers of states rang-
ing from 1 to 30 were trained multiple
times on 20 sentences of average length
51 symbols (27 distinct symbols, consist-
ing of 26 letters and ‘ ’), and tested on
40 sequences of average length 100. Fig-
ure 4 shows the perplexity of test sen-
tences. For VB, the predictive probability
is intractable to compute, so the modal set-
ting of parameters was used. Both MAP
and VB models were given optimal set-
tings of the hyperparameters found in the
iHMM. We see that the iHMM has a lower
perlexity than every model size for ML,
MAP, and VB, and obtains this with one
countably infinite model.

6 Discussion

We have described the hierarchical Dirichlet process, a hierarchical, nonparametric model
for clustering problems involving multiple groups of data. HDP mixture models are able
to automatically determine the appropriate number of mixture components needed, and
exhibit sharing of statistical strength across groups by having components shared across
groups. We have described the HDP as a distribution over distributions, using both the
stick-breaking construction and the Chinese restaurant franchise. In [10] we also describe
a fourth perspective based on the infinite limit of finite mixture models, and give detail for



how the HDP can be applied to the iHMM. Direct extensions of themodel include use of
nonparametric priors other than the DP, building higher level hierarchies as in our NIPS
experiment, as well as hierarchical extensions to the iHMM.

Appendix: Gibbs Sampling in the CRF

The CRF is defined by the variablest = (tji), k = (kjt), andθ = (θk). We describe an
inference procedure for the HDP mixture model based on Gibbs samplingt,k andθ given
data itemsx. For the full derivation see [10]. Letf(·|θ) andh be the density functions for
F (θ) andH respectively,n−i

jt be the number oftji′ ’s equal tot excepttji, andm−jt
k be

the number ofkj′t′ ’s equal tok exceptkjt. The conditional probability fortji given the
other variables is proportional to the product of a prior and likelihood term. The prior term
is given by (7) where, by exchangeability, we can taketji to be the last one assigned. The
likelihood is given byf(xji|θkjt

) where fort = tnew we may samplekjtnew using (8), and
θknew ∼ H . The distribution is then:

p(tji = t | t\tji,k,θ,x) ∝

{

α0f(xji|θkjt
) if t = tnew

n−i
jt f(xji|θkjt

) if t currently used.
(9)

Similarly the conditional distributions forkjt andθk are:

p(kjt = k | t,k\kjt,θ,x) ∝

{

γ
∏

i:tji=t f(xji|θk) if k = knew

m−t
k

∏

i:tji=t f(xji|θk) if k currently used.
(10)

p(θk | t,k,θ\θk,x) ∝ h(θk)
∏

ji:kjtji
=k

f(xji|θk) (11)

whereθknew ∼ H . If H is conjugate toF (·) we have the option of integrating outθ.
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