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Abstract

Compressed sensing is an emerging field based on the revelation that a small group
of linear projections of a sparse signal contains enough information for reconstruc-
tion. In this paper we introduce a new theory fordistributed compressed sensing
(DCS) that enables new distributed coding algorithms for multi-signal ensembles
that exploit both intra- and inter-signal correlation structures. The DCS theory rests
on a new concept that we term thejoint sparsityof a signal ensemble. We study
three simple models for jointly sparse signals, propose algorithms for joint recov-
ery of multiple signals from incoherent projections, and characterize theoretically
and empirically the number of measurements per sensor required for accurate re-
construction. In some sense DCS is a framework for distributed compression of
sources with memory, which has remained a challenging problem in information
theory for some time. DCS is immediately applicable to a range of problems in
sensor networks and arrays.

1 Introduction
Distributed communication, sensing, and computing[13, 17] are emerging fields with nu-
merous promising applications. In a typical setup, large groups of cheap and individu-
ally unreliable nodes may collaborate to perform a variety of data processing tasks such
as sensing, data collection, classification, modeling, tracking, and so on. As individual
nodes in such a network are often battery-operated, power consumption is a limiting fac-
tor, and the reduction of communication costs is crucial. In such a setting,distributed
source coding[8, 13, 14, 17] may allow the sensors to save on communication costs. In the
Slepian-Wolf framework for lossless distributed coding [8, 14], the availability ofcorre-
lated side informationat the decoder enables the source encoder to communicate losslessly
at the conditional entropy rate, rather than the individual entropy. Because sensor networks
and arrays rely on data that often exhibit strong spatial correlations [13, 17], distributed
compression can reduce the communication costs substantially, thus enhancing battery life.
Unfortunately, distributed compression schemes for sources with memory are not yet ma-
ture [8, 13, 14, 17].



We propose a new approach for distributed coding of correlated sources whose signal cor-
relations take the form of a sparse structure. Our approach is based on another emerging
field known ascompressed sensing(CS) [4, 9]. CS builds upon the groundbreaking work
of Cand̀es et al. [4] and Donoho [9], who showed that signals that aresparserelative to a
known basis can be recovered from a small number of nonadaptive linear projections onto
a second basis that is incoherent with the first. (A random basis provides such incoherence
with high probability. Hence CS with random projections isuniversal— the signals can
be reconstructed if they are sparse relative toany known basis.) The implications of CS
for signal acquisition and compression are very promising. With no a priori knowledge of
a signal’s structure, a sensor node could simultaneously acquire and compress that signal,
preserving the critical information that is extracted only later at a fusion center.

In our framework fordistributed compressed sensing(DCS), this advantage is particularly
compelling. In a typical DCS scenario, a number of sensors measure signals that are each
individually sparse in some basis and also correlated from sensor to sensor. Each sensor
independentlyencodes its signal by projecting it onto another, incoherent basis (such as a
random one) and then transmits just a few of the resulting coefficients to a single collection
point. Under the right conditions, a decoder at the collection point can reconstruct each of
the signals precisely. The DCS theory rests on a concept that we term thejoint sparsityof a
signal ensemble. We study in detail three simple models for jointly sparse signals, propose
tractable algorithms for joint recovery of signal ensembles from incoherent projections, and
characterize theoretically and empirically the number of measurements per sensor required
for reconstruction. While the sensors operate entirely without collaboration, joint decoding
can recover signals using far fewer measurements per sensor than would be required for
separable CS recovery. This paper presents our specific results for one of the three models;
the other two are highlighted in our papers [1, 2, 11].

2 Sparse Signal Recovery from Incoherent Projections
In the traditional CS setting, we consider a single signalx ∈ R

N , which we assume to be
sparse in a known orthonormal basis or frameΨ = [ψ1, ψ2, . . . , ψN ]. That is,x = Ψθ
for someθ, where‖θ‖0 = K holds.1 The signalx is observed indirectly via anM ×
N measurement matrixΦ, whereM < N . We let y = Φx be the observation vector,
consisting of theM inner products of the measurement vectors against the signal. TheM
rows ofΦ are the measurement vectors, against which the signal is projected. These rows
are chosen to beincoherentwith Ψ — that is, they each have non-sparse expansions in
the basisΨ [4, 9]. In general,Φ meets the necessary criteria when its entries are drawn
randomly, for example independent and identically distributed (i.i.d.) Gaussian.

Although the equationy = Φx is underdetermined, it is possible to recoverx from y under
certain conditions. In general, due to the incoherence betweenΦ andΨ, θ can be recovered
by solving thè 0 optimization problem

θ̂ = arg min ‖θ‖0 s.t.y = ΦΨθ.

In principle, remarkably few random measurements are required to recover aK-sparse
signal via`0 minimization. Clearly, more thanK measurements must be taken to avoid
ambiguity; in theory,K + 1 random measurements will suffice [2]. Unfortunately, solving
this `0 optimization problem appears to be NP-hard [6], requiring a combinatorial enumer-
ation of the

(
N
K

)
possible sparse subspaces forθ.

The amazing revelation that supports the CS theory is that a much simpler problem yields
an equivalent solution (thanks again to the incoherence of the bases): we need only solve

1The`0 “norm” ‖θ‖0 merely counts the number of nonzero entries in the vectorθ. CS theory also
applies to signals for which‖θ‖p ≤ K, where0 < p ≤ 1; such extensions for DCS are a topic of
ongoing research.



for the`1-sparsest vectorθ that agrees with the observed coefficientsy [4, 9]

θ̂ = arg min ‖θ‖1 s.t.y = ΦΨθ.

This optimization problem, known also as Basis Pursuit (BP) [7], is significantly more
tractable and can be solved with traditional linear programming techniques. There is no
free lunch, however; more thanK + 1 measurements will be required in order to recover
sparse signals. In general, there exists a constant oversampling factorc = c(K,N) such
that cK measurements suffice to recoverx with very high probability [4, 9]. Commonly
quoted asc = O(log(N)), we have found thatc ≈ log2(1 + N/K) provides a useful
rule-of-thumb [2]. At the expense of slightly more measurements, greedy algorithms have
also been developed to recoverx from y. One example, known as Orthogonal Matching
Pursuit (OMP) [15], requiresc ≈ 2 ln(N). We exploit both BP and greedy algorithms for
recovering jointly sparse signals.

3 Joint Sparsity Models
In this section, we generalize the notion of a signal being sparse in some basis to the
notion of an ensemble of signals beingjointly sparse. We consider three differentjoint
sparsity models(JSMs) that apply in different situations. In most cases, each signal is itself
sparse, and so we could use the CS framework from above to encode and decode each one
separately. However, there also exists a framework wherein ajoint representationfor the
ensemble uses fewer total vectors.

We use the following notation for our signal ensembles and measurement model. Denote
thesignalsin the ensemble byxj , j ∈ {1, 2, . . . , J}, and assume that each signalxj ∈ R

N .
We assume that there exists a knownsparse basisΨ for R

N in which thexj can be sparsely
represented. Denote byΦj the measurement matrixfor signalj; Φj is Mj × N and, in
general, the entries ofΦj are different for eachj. Thus,yj = Φjxj consists ofMj < N
incoherent measurementsof xj .

JSM-1: Sparse common component + innovations.In this model, all signals share a
commonsparse component while each individual signal contains a sparseinnovationcom-
ponent; that is,

xj = zC + zj , j ∈ {1, 2, . . . , J}

with
zC = ΨθC , ‖θC‖0 = K and zj = Ψθj , ‖θj‖0 = Kj .

Thus, the signalzC is common to all of thexj and has sparsityK in basisΨ. The signals
zj are the unique portions of thexj and have sparsityKj in the same basis. A practical
situation well-modeled by JSM-1 is a group of sensors measuring temperatures at a number
of outdoor locations throughout the day. The temperature readingsxj have both temporal
(intra-signal) and spatial (inter-signal) correlations. Global factors, such as the sun and
prevailing winds, could have an effectzC that is both common to all sensors and structured
enough to permit sparse representation. More local factors, such as shade, water, or ani-
mals, could contribute localized innovationszj that are also structured (and hence sparse).
Similar scenarios could be imagined for a network of sensors recording other phenomena
that change smoothly in time and in space and thus are highly correlated.

JSM-2: Common sparse supports.In this model, all signals are constructed from the
same sparse set of basis vectors, but with different coefficients; that is,

xj = Ψθj , j ∈ {1, 2, . . . , J},

where eachθj is supported only on the sameΩ ⊂ {1, 2, . . . , N} with |Ω| = K. Hence,
all signals havè0 sparsity ofK, and all are constructed from the sameK basis elements,
but with arbitrarily different coefficients. A practical situation well-modeled by JSM-2
is where multiple sensors acquire the same signal but with phase shifts and attenuations



caused by signal propagation. In many cases it is critical to recover each one of the sensed
signals, such as in many acoustic localization and array processing algorithms. Another
useful application for JSM-2 is MIMO communication [16].

JSM-3: Nonsparse common + sparse innovations.This model extends JSM-1 so that
the common component need no longer be sparse in any basis; that is,

xj = zC + zj , j ∈ {1, 2, . . . , J}

with
zC = ΨθC and zj = Ψθj , ‖θj‖0 = Kj ,

butzC is not necessarily sparse in the basisΨ. We also consider the case where the supports
of the innovations are shared for all signals, which extends JSM-2. A practical situation
well-modeled by JSM-3 is where several sources are recorded by different sensors together
with a background signal that is not sparse in any basis. Consider, for example, a computer
vision-based verification system in a device production plant. Cameras acquire snapshots
of components in the production line; a computer system then checks for failures in the
devices for quality control purposes. While each image could be extremely complicated,
the ensemble of images will be highly correlated, since each camera is observing the same
device with minor (sparse) variations. JSM-3 could also be useful in some non-distributed
scenarios. For example, it motivates the compression of data such as video, where the
innovations or differences between video frames may be sparse, even though a single frame
may not be very sparse. In general, JSM-3 may be invoked for ensembles with significant
inter-signal correlations but insignificant intra-signal correlations.

4 Recovery of Jointly Sparse Signals
In a setting where a network or array of sensors may encounter a collection of jointly
sparse signals, and where a centralized reconstruction algorithm is feasible, the number
of incoherent measurements required by each sensor can be reduced. For each JSM, we
propose algorithms for joint signal recovery from incoherent projections and characterize
theoretically and empirically the number of measurements per sensor required for accurate
reconstruction. We focus in particular on JSM-3 in this paper but also overview our results
for JSMs 1 and 2, which are discussed in further detail in our papers [1, 2, 11].

4.1 JSM-1: Sparse common component + innovations
For this model (see also [1, 2]), we have proposed an analytical framework inspired by the
principles of information theory. This allows us to characterize the measurement ratesMj

required tojointly reconstruct the signalsxj . The measurement rates relate directly to the
signals’conditional sparsities, in parallel with the Slepian-Wolf theory. More specifically,
we have formalized the following intuition. Consider the simple case ofJ = 2 signals. By
employing the CS machinery, we might expect that (i)(K + K1)c coefficients suffice to
reconstructx1, (ii) (K+K2)c coefficients suffice to reconstructx2, yet only (iii) (K+K1+
K2)c coefficients should suffice to reconstruct bothx1 andx2, since we haveK+K1 +K2

nonzero elements inx1 andx2. In addition, given the(K + K1)c measurements forx1

as side information, and assuming that the partitioning ofx1 into zC and z1 is known,
cK2 measurements that describez2 should allow reconstruction ofx2. Formalizing these
arguments allows us to establish theoretical lower bounds on the required measurement
rates at each sensor; Fig.1(a) shows such a bound for the case ofJ = 2 signals.

We have also established upper bounds on the required measurement ratesMj by proposing
a specific algorithm for reconstruction [1]. The algorithm uses carefully designed measure-
ment matricesΦj (in which some rows are identical and some differ) so that the resulting
measurements can be combined to allow step-by-step recovery of the sparse components.
The theoretical ratesMj are below those required for separable CS recovery of each signal
xj (see Fig. 1(a)). We also proposed a reconstruction technique based on a single exe-
cution of a linear program, which seeks the sparsest components[zC ; z1; . . . zJ ] that



(a)
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation

R
1

R
2

Converse

Anticipated

Achievable

Separate

(b)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of measurements per sensor

P
ro

b.
 o

f e
xa

ct
 r

ec
on

st
ru

ct
io

n

n = 50, k = 5

1
2

2

4

4

8

8

16

16

32

32

Figure 1: (a) Converse bounds and achievable measurement rates forJ = 2 signals with common
sparse component and sparse innovations (JSM-1). We fix signal lengthsN = 1000 and sparsities
K = 200, K1 = K2 = 50. The measurement ratesRj := Mj/N reflect the number of measure-
ments normalized by the signal length. Blue curves indicate our theoretical and anticipated converse
bounds; red indicates a provably achievable region, and pink denotes the rates required for separable
CS signal reconstruction. (b) Reconstructing a signal ensemble with common sparse supports (JSM-
2). We plot the probability of perfect reconstruction via DCS-SOMP (solid lines) and independent
CS reconstruction (dashed lines) as a function of the number of measurements per signalM and the
number of signalsJ . We fix the signal length toN = 50 and the sparsity toK = 5. An oracle
encoder that knows the positions of the large coefficients would use5 measurements per signal.

account for the observed measurements. Numerical simulations support such an approach
(see Fig.1(a)). Future work will extend JSM-1 to`p-compressible signals,0 < p ≤ 1.

4.2 JSM-2: Common sparse supports

Under the JSM-2 signal ensemble model (see also [2, 11]), independent recovery of each
signal via`1 minimization would requirecK measurements per signal. However, algo-
rithms inspired by conventional greedy pursuit algorithms (such as OMP [15]) can sub-
stantially reduce this number. In the single-signal case, OMP iteratively constructs the
sparse support setΩ; decisions are based on inner products between the columns ofΦΨ
and a residual. In the multi-signal case, there are more clues available for determining the
elements ofΩ.

To establish a theoretical justification for our approach, we first proposed a simple One-
Step Greedy Algorithm (OSGA) [11] that combines all of the measurements and seeks the
largest correlations with the columns of theΦjΨ. We established that, assuming thatΦj

has i.i.d. Gaussian entries and that the nonzero coefficients in theθj are i.i.d. Gaussian, then
with M ≥ 1 measurements per signal, OSGA recoversΩ with probability approaching1
asJ → ∞. Moreover, withM ≥ K measurements per signal, OSGA recovers allxj with
probability approaching1 asJ → ∞. This meets the theoretical lower bound forMj .

In practice, OSGA can be improved using an iterative greedy algorithm. We proposed a
simple variant of Simultaneous Orthogonal Matching Pursuit (SOMP) [16] that we term
DCS-SOMP [11]. For this algorithm, Fig. 1(b) plots the performance as the number of
sensors varies fromJ = 1 to 32. We fix the signal lengths atN = 50 and the sparsity of
each signal toK = 5. With DCS-SOMP, for perfect reconstruction of all signals the aver-
age number of measurements per signal decreases as a function ofJ . The trend suggests
that, for very largeJ , close toK measurements per signal should suffice. On the contrary,
with independent CS reconstruction, for perfect reconstruction of all signals the number of
measurements per sensorincreasesas a function ofJ . This surprise is due to the fact that
each signal will experience an independent probabilityp ≤ 1 of successful reconstruction;
therefore the overall probability of complete success ispJ . Consequently, each sensor must
compensate by making additional measurements.



4.3 JSM-3: Nonsparse common + sparse innovations
The JSM-3 signal ensemble model provides a particularly compelling motivation for joint
recovery. Under this model, no individual signalxj is sparse, and so separate signal recov-
ery would require fullyN measurements per signal. As in the other JSMs, however, the
commonality among the signals makes it possible to substantially reduce this number.

Our recovery algorithms are based on the observation that if the common componentzC

were known, then each innovationzj could be estimated using the standard single-signal
CS machinery on the adjusted measurementsyj−ΦjzC = Φjzj . WhilezC is not known in
advance, it can beestimatedfrom the measurements. In fact, across allJ sensors, a total of∑

j Mj random projections ofzC are observed (each corrupted by a contribution from one
of thezj). SincezC is not sparse, it cannot be recovered via CS techniques, but when the
number of measurements is sufficiently large (

∑
j Mj � N ), zC can be estimated using

standard tools from linear algebra. A key requirement for such a method to succeed in
recoveringzC is that eachΦj be different, so that their rows combine to span all ofR

N . In
the limit, zC can be recovered while still allowing each sensor to operate at the minimum
measurement rate dictated by the{zj}. A prototype algorithm, which we name Transpose
Estimation of Common Component (TECC), is listed below, where we assume that each
measurement matrixΦj has i.i.d.N (0, σ2

j ) entries.

TECC Algorithm for JSM-3
1. Estimate common component:Define the matrix̂Φ as the concatenation of the regu-

larized individual measurement matricesΦ̂j = 1

Mjσ2

j

Φj , that is,Φ̂ = [Φ̂1, Φ̂2, . . . , Φ̂J ].

Calculate the estimate of the common component asẑC = 1

J
Φ̂T y.

2. Estimate measurements generated by innovations:Using the previous estimate, sub-
tract the contribution of the common part on the measurements and generate estimates
for the measurements caused by the innovations for each signal:ŷj = yj − Φj ẑC .

3. Reconstruct innovations:Using a standard single-signal CS reconstruction algorithm,
obtain estimates of the innovationsẑj from the estimated innovation measurementsŷj .

4. Obtain signal estimates:Sum the above estimates, lettingx̂j = ẑC + ẑj .

The following theorem shows that asymptotically, by using the TECC algorithm, each
sensor need only measure at the rate dictated by the sparsityKj .

Theorem 1 [2] Assume that the nonzero expansion coefficients of the sparse innovations
zj are i.i.d. Gaussian random variables and that their locations are uniformly distributed
on{1, 2, ..., N}. Then the following statements hold:

1. Let the measurement matricesΦj contain i.i.d.N (0, σ2
j ) entries withMj ≥ Kj +

1. Then each signalxj can be recovered using the TECC algorithm with probability
approaching1 asJ → ∞.

2. LetΦj be a measurement matrix withMj ≤ Kj for somej ∈ {1, 2, ..., J}. Then with
probability1, the signalxj cannot be uniquely recovered by any algorithm for anyJ .

For largeJ , the measurement rates permitted by Statement 1 are the lowest possible forany
reconstruction strategy on JSM-3 signals, even neglecting the presence of the nonsparse
component. Thus, Theorem 1 provides a tight achievable and converse for JSM-3 signals.
The CS technique employed in Theorem 1 involves combinatorial searches for estimating
the innovation components. More efficient techniques could also be employed (including
several proposed for CS in the presence of noise [3, 5, 7, 10, 12]).

While Theorem 1 suggests the theoretical gains from joint recovery asJ → ∞, practical
gains can also be realized with a moderate number of sensors. For example, suppose in
the TECC algorithm that the initial estimatêzC is not accurate enough to enable correct



identification of the sparse innovation supports{Ωj}. In such a case, it may still be possible
for a rough approximation of the innovations{zj} to help refine the estimatêzC . This in
turn could help to refine the estimates of the innovations. Since each component helps to
estimate the others, we propose an iterative algorithm for JSM-3 recovery. The Alternating
Common and Innovation Estimation (ACIE) algorithm exploits the observation that once
the basis vectors comprising the innovationzj have been identified in the index setΩj ,
their effect on the measurementsyj can be removed to aid in estimatingzC .

ACIE Algorithm for JSM-3
1. Initialize: SetΩ̂j = ∅ for eachj. Set the iteration counter` = 1.

2. Estimate common component: Let Φ
j,Ω̂j

be theMj × |Ω̂j | submatrix obtained

by sampling the columnŝΩj from Φj and construct anMj × (Mj − |Ω̂j |) matrix
Qj = [qj,1 . . . qj,Mj−|Ω̂j |

] having orthonormal columns that span the orthogonal com-
plement ofcolspan(Φ

j,Ω̂j
). Remove the projection of the measurements into the afore-

mentioned span to obtain measurements caused exclusively by vectors not inΩ̂j , letting

ỹj = QT
j yj andΦ̃j = QT

j Φj . Use the modified measurementsỸ =
[
ỹT
1 ỹT

2 . . . ỹT
J

]T

and modified holographic basis̃Φ =
[
Φ̃T

1 Φ̃T
2 . . . Φ̃T

J

]T

to refine the estimate of the

measurements caused by the common part of the signal, settingz̃C = Φ̃†Ỹ , where
A† = (ATA)−1AT denotes the pseudoinverse of matrixA.

3. Estimate innovation supports:For each signalj, subtract̃zC from the measurements,
ŷj = yj − Φj z̃C , and estimate the sparse support of each innovationΩ̂j .

4. Iterate: If ` < L, a preset number of iterations, then increment` and return to Step 2.
Otherwise proceed to Step 5.

5. Estimate innovation coefficients:For each signalj, estimate the coefficients for the
indices inΩ̂j , settingθ̂

j,Ω̂j
= Φ†

j,Ω̂j

(yj − Φj z̃C), whereθ̂
j,Ω̂j

is a sampled version of

the innovation’s sparse coefficient vector estimateθ̂j .

6. Reconstruct signals:Estimate each signal aŝxj = z̃C + ẑj = z̃C + Φj θ̂j .

In the case where the innovation support estimate is correct (Ω̂j = Ωj), the measurements
ỹj will describe only the common componentzC . If this is true for every signalj and the
number of remaining measurements

∑
j Mj−KJ ≥ N , thenzC can be perfectly recovered

in Step 2. Because it may be difficult to correctly obtain allΩj in the first iteration, we find
it preferable to run the algorithm for several iterations.

Fig. 2(a) shows that, for sufficiently largeJ , we can recover all of the signals with signifi-
cantly fewer thanN measurements per signal. We note the following behavior in the graph.
First, asJ grows, it becomes more difficult to perfectly reconstruct allJ signals. We be-
lieve this is inevitable, because even ifzC were known without error, then perfect ensemble
recovery would require the successful execution ofJ independentruns of OMP. Second,
for smallJ , the probability of success can decrease at high values ofM . We believe this is
due to the fact that initial errors in estimatingzC may tend to be somewhat sparse (sinceẑC

roughly becomes an average of the signals{xj}), and these sparse errors can mislead the
subsequent OMP processes. For more moderateM , it seems that the errors in estimating
zC (though greater) tend to be less sparse. We expect that a more sophisticated algorithm
could alleviate such a problem, and we note that the problem is also mitigated at higherJ .

Fig. 2(b) shows that when the sparse innovations share common supports we see an even
greater savings. As a point of reference, a traditional approach to signal encoding would
require1600 total measurements to reconstruct theseJ = 32 nonsparse signals of length
N = 50. Our approach requires only about10 per sensor for a total of320 measurements.
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Figure 2: Reconstructing a signal ensemble with nonsparse common component and sparse inno-
vations (JSM-3) using ACIE. (a) Reconstruction using OMP independently on each signal in Step 3
of the ACIE algorithm (innovations have arbitrary supports). (b) Reconstruction using DCS-SOMP
jointly on all signals in Step 3 of the ACIE algorithm (innovations have identical supports). Signal
lengthN = 50, sparsityK = 5. The common structure exploited by DCS-SOMP enables dramatic
savings in the number of measurements. We average over 1000 simulation runs.
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