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Abstract

Training a learning algorithm is a costly task. A major goal of active
learning is to reduce this cost. In this paper we introduce a new algo-
rithm, KQBC, which is capable of actively learning large scale problems
by using selective sampling. The algorithm overcomes the costly sam-
pling step of the well knowiQuery By Committee (QBC) algorithm by
projecting onto a low dimensional space. KQBC also enables the use
of kernels, providing a simple way of extending QBC to the non-linear
scenario. Sampling the low dimension space is done usingithrand

run random walk. We demonstrate the success of this novel algorithm by
applying it to both artificial and a real world problems.

1 Introduction

Stone’s celebrated theorem proves that given a large enough training sequence, even naive
algorithms such as thenearest neighbors can be optimal. However, collecting large train-

ing sequences poses two main obstacles. First, collecting these sequences is a lengthy and
costly task. Second, processing large datasets requires enormous resources. The selective
sampling framework [1] suggests permitting the learner some control over the learning pro-
cess. In this way, the learner can collect a short and informative training sequence. This is
done by generating a large set of unlabeled instances and allowing the learner to select the
instances to be labeled.

The Query By Committee algorithm (QBC) [2] was the inspiration behind many algorithms

in the selective sampling framework[3, 4, 5]. QBC is a simple yet powerful algorithm. Dur-
ing learning it maintains wersion space, the space of all the classifiers which are consistent
with all the previous labeled instances. Whenever an unlabeled instance is available, QBC
selects two random hypotheses from the version space and only queries for the label of the
new instance if the two hypotheses disagree. Freund et al. [6] proved that when certain
conditions apply, QBC will reach a generalization erroe @fhen using onlyO (log 1/¢)

labels. QBC works in an online fashion where each instance is considered only once to de-
cide whether to query for its label or not. This is significant when there are a large number
of unlabeled instances. In this scenario, batch processing of the data is unfeasible (see e.g.
[7]). However, QBC was never implemented as is, since it requires the ability to sample
hypotheses from the version space, a task that all known method do in an unreasonable
amount of time [8].



The algorithm we present in this paper uses the same skelsetQB&, but replaces sam-

pling from the high dimensional version space by sampling from a low dimensional projec-
tion of it. By doing so, we obtain an algorithm which can cope with large scale problems
and at the same time authorizes the use of kernels. Although the algorithm uses linear clas-
sifiers at its core, the use of kernels makes it much broader in scope. This new sampling
method is presented in section 2. Section 3 gives a detailed description of the kernel-
ized version, th&ernel Query By Committee (KQBC) algorithm. The last building block

is a method for sampling from convex bodies. We suggesthihand run [9] random

walk for this purpose in section 4. A Matlab implementation of KQBC is available at
http://ww. cs. huji.ac.il/labs/l|earning/code/gbc.

The empirical part of this work is presented in section 5. We demonstrate how KQBC
works on two binary classification tasks. The first is a synthetic linear classification task.
The second involves differentiating male and female facial images. We show that in both
cases, KQBC learns faster than Support Vector Machines (SVM) [10]. KQBC can be used
to select a subsample to which SVM is applied. In our experiments, this method was
superior to SVM; however, KQBC outperformed both.

Related work: Many algorithms for selective sampling have been suggested in the litera-
ture. However only a few of them have a theoretical justification. As already mentioned,
QBC has a theoretical analysis. Two other notable algorithms are the greedy active learn-
ing algorithm [11] and the perceptron based active learning algorithm [12]. The greedy
active learning algorithm has the remarkable property of being close to optimal in all set-
tings. However, it operates in a batch setting, where selecting the next query point requires
reevaluation of the whole set of unlabeled instances. This is problematic when the dataset is
large. The perceptron based active learning algorithm, on the other hand, is extremely effi-
cientin its computational requirements, but is restricted to linear classifiers since it requires
the explicit use of the input dimension.

Graepel et al. [13] presentedbdliard walk in the version space as a part of the Bayes Point
Machine. Similar to the method presented here hitiégard walk is capable of sampling
hypotheses from the version space when kernels are used. The method presented here has
several advantages: it has better theoretical grounding and it is easier to implement.

2 A New Method for Sampling the Version-Space

TheQuery By Committee algorithm [2] provides a general framework that can be used with
any concept class. Whenever a new instance is presented, QBC generates two independent
predictions for its label by sampling two hypotheses from the version $péicthe two
predictions differ, QBC queries for the label of the instance at hand (see algorithm 1). The
main obstacle in implementing QBC is the need to sample from the version space (step 2b).
It is not clear how to do this with reasonable computational complexity. As is the case for
most research in machine learning, we first focus on the class of linear classifiers and then
extend the discussion by using kernels. In the linear case, the dimension of the version
space is the input dimension which is typically large for real world problems. Thus direct
sampling is practically impossible. We overcome this obstacle by projecting the version
space onto a low dimensional subspace.

Assume that the learner has seen the labeled sa%pie{(xi,yi)}le, wherez; € IR?
andy; € {£1}. The version space is defined to be the set of all classifiers which correctly
classify all the instances seen so far:

V=A{w: ||lw| <1andV¥iy; (w-z;) > 0} 1)

1The version space is the collection of hypotheses that are consistent with previous labels.



Algorithm 1 Query By Committee [2]
Inputs:
e A concept clas€ and a probability measutredefined ovec.

The algorithm:
1. LetS «— ¢,V «C.

2. Fort=1,2,...

(a) Receive an instanae
(b) Lethy, ho be two random hypotheses selected fronestricted tal’.
(c) If hy (z) # ho (z) then
i. Ask for the labely of x.
ii. Add the pair(z,y)toS.
ii. LetV —{ceC :V(z,y) €S c(z) =y}

QBC assumes a prierover the class of linear classifiers. The sampladuces a posterior
over the class of linear classifiers which is the restrictiom & V. Thus, the probability
that QBC will query for the label of an instaneas exactly

2 Pr [w-z>0] Pr [w-z<0] 2

w~v|V w~v|V
wherev|V is the restriction of to V.

From (2) we see that there is no need to explicitly select two random hypotheses. Instead,
we can use any stochastic approach that will query for the label with the same probability
as in (2). Furthermore, if we can samglec {£1} such that

Pr(j = 1] = Pryep v [w -z > 0] and 3)
Pr[j = —1] = Pryeyv [w-z < 0] (4)

we can use it instead, by querying the label of with a probability of
2Pr[g = 1] Pr[g = —1]. Based on this observation, we introduce a stochastic algorithm
which returngj with probabilities as specified in (3) and (4). This procedure can replace
the sampling step in the QBC algorithm.

Let S = {(xi,yi)}le be a labeled sample. Letbe an instance for which we need

to decide whether to query for its label or not. We denotelbyhe version space as
defined in (1) and denote t# the space spanned by, ..., z; andz. QBC asks for two
random hypotheses frovi and queries for the label aof only if these two hypotheses
predict different labels fox. Our procedure does the same thing, but instead of sampling
the hypotheses fro we sample them fromV N 7". One main advantage of this new
procedure is that it samples from a space of low dimension and therefore its computational
complexity is much lower. This is true sin@eis a space of dimensioh + 1 at most,
wherek is the number of queries for label QBC made so far. Hence, the bodyl" is a
low-dimensional convex bodyand thus sampling from it can be done efficiently. The input
dimension plays a minor role in the sampling algorithm. Another important advantage is
that it allows us to use kernels, and therefore gives a systematic way to extend QBC to the
non-linear scenario. The use of kernels is described in detail in section 3.

The following theorem proves that indeed sampling frgm 7" produces the desired re-
sults. It shows that if the priar (see algorithm 1) is uniform, then sampling hypotheses
uniformly fromV or fromV N T generates the same results.

2From the definition of the version spageit follows that it is a convex body.



Theorem 1 Let S = {(xi,yi)}le be a labeled sample and z an instance. Let the version
spacebeV = {w : ||lw|| < 1and Vi y; (w-x;) >0}andT = span(z,z1,...,xx) then
Pr’wNU(V) [U) x> O] = PrwNU(VﬁT) [U) T > O] and
Pry vy [w- 2z < 0] =Pryywnr) [w-z <0

where U (-) isthe uniform distribution.

The proof of this theorem is given in the supplementary material [14].

3 Sampling with Kernels

In this section we show how the new sampling method presented in section 2 can be used
together with kernel. QBC uses the random hypotheses for one purpose alone: to check the
labels they predict for instances. In our new sampling method the hypotheses are sampled
from V N T, whereT = span(z,z1,...,x;). Hence, any hypothesis is represented by

w € V NT,that has the form

k
w = apr + Z 5T (5)
j=1
The labelw assigns to an instanag is

k k
w-z' = | apx + g ajzi | 2’ =aor -2’ + g ajzi - (6)
=1 i=1

Note that in (6) only inner products are used, hence we can use kernels. Using these ob-
servations, we can sample a hypothesis by samplifng. ., a; and definew as in (5).
However, since the;’s do not form an orthonormal basis 8f sampling they's uniformly

is not equivalent to sampling the’s uniformly. We overcome this problem by using an
orthonormal basis df'. The following lemma shows a possible way in which the orthonor-
mal basis fofl’ can be computed when only inner products are used. The method presented
here does not make use of the fact that we can build this basis incrementally.

Lemma 1 Letxo,...,x; beaset of vectors, let T' = span(xo, ..., zx) andlet G = (g; ;)

be the Grahm matrix such that g; ; = z; - ;. Let Ay, .., A, bethe non-zero eigen values
of G with the corresponding eigen-vectors~4, . . ., 7,. Thenthevectorst,, . .., ¢, such that
k
p N (1)
i Xy
= Vi

form an orthonormal basis of the space T'.

The proof of lemma 1 is given in the supplementary material [14]. This lemma is significant

since the basisy, . .., t, enables us to sample froln N T using simple techniques. Note
that a vectow € T can be expressed &s!_, « (i) ¢;. Since the;'s form an orthonormal
basis,||w|| = ||a||. Furthermore, we can check the lakhehssigns ta:; by
. A i ()
w-T; = a(i)t,-x; = a(i) — - x;
et s = Fa 2

which is a function of the Grahm matrix. Therefore, sampling figrm 7" boils down to
the problem of sampling from convex bodies, where instead of sampling a vector directly
we sample the coefficients of the orthonormal basis. . , ¢,..



There are several methods for generating the final hypotteebis used in the generaliza-

tion phase. In the experiments reported in section 5 we have randomly selected a single
hypothesis fronl N T and used it to make all predictions, whéfds the version space at

the time when the learning terminated dfids the span of all instances for which KQBC
queried for label during the learning process.

4 Hitand Run

Hit and run [9] is a method of sampling from a convex bddwsing a random walk. Let
z € K, a single step of the hit and run begins by choosing a random pdiom the unit
sphere. Afterwards the algorithm moves to a random point selected uniformly frofd
wherel is the line passing throughandz + .

Hit and run has several advantages over other random walks for sampling from convex
bodies. First, its stationary distribution is indeed the uniform distribution, it mixes fast [9]
and it does not require a “warm” starting point [15]. What makes it especially suitable for
practical use is the fact that it does not require any parameter tuning other than the number
of random steps. It is also very easy to implement.

Current proofs [9, 15] show thap* (d3) steps are needed for the random walk to mix.
However, the constants in these bounds are very large. In practice hit and run mixes much
faster than that. We have used it to sample from the BodyT. The number of steps

we used was very small, ranging from couple of hundred to a couple of thousands. Our
empirical study shows that this suffices to obtain impressive results.

5 Empirical Study

In this section we present the results of applying our new kernelized version of the query by
committee (KQBC), to two learning tasks. The first task requires classification of synthetic
data while the second is a real world problem.

5.1 Synthetic Data

In our first experiment we studied the task of learning a linear classifiedidimmensional
space. The target classifier is the vector = (1,0,...,0) thus the label of an in-
stancer € R? is the sign of its first coordinate. The instances were normally distributed
N (= 0,% = I). In each trial we used0000 unlabeled instances and let KQBC select

the instances to query for the labels. We also applied Support Vector Machine (SVM) to
the same data in order to demonstrate the benefit of using active learning. The linear kernel
was used for both KQBC and SVM. Since SVM is a passive learner, SVM was trained on
prefixes of the training data of different sizes. The results are presented in figure 1.

The difference between KQBC and SVM is notable. When both are applied to a 15-
dimensional linear discrimination problem (figure 1b), SVM and KQBC have an error rate
of ~ 6% and~ 0.7% respectively aftet 20 labels. After such a short training sequence the
difference is of an order of magnitude. The same qualitative results appear for all problem
sizes.

As expected, the generalization error of KQBC decreases exponentially fast as the num-
ber of queries is increased, whereas the generalization error of SVM decreases only at an
inverse-polynomialrate (the rateds* (1/k) wherek is the number of labels). This should

not come as a surprise since Freund et al. [6] proved that this is the expected behavior.
Note also that the bound 60 - 2-°-67+/4 gver the generalization error that was proved in

[6] was replicated in our experiments (figure 1c).
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Figure 1:Results on the synthetic data The generalization error (y-axis) in percents (in
logarithmic scale) versus the number of queries (x-axis). Plots (a), (b) and (c) represent
the synthetic task in 5, 15 and 45 dimensional spaces respectively. The generalization error
of KQBC is compared to the generalization error of SVM. The results presented here are
averaged over 50 trials. Note that the error rate of KQBC decreases exponentially fast.
Recall that [6] proved a bound on the generalization errdi0of2—0-67%/¢ wherek is the
number of queries andis the dimension.

5.2 Face Images Classification

The learning algorithm was then applied in a more realistic setting. In the second task we
used the AR face images dataset [16]. The people in these images are wearing different
accessories, have different facial expressions and the faces are lit from different directions.
We selected a subsetbf56 images from this dataset. Each image was converted into gray-
scale and re-sized &5 x 60 pixels, i.e. each image was representedag)a dimensional

vector. See figure 2 for sample images. The task was to distinguish male and female
images. For this purpose we split the data into a training sequenig®@images and a

test sequence of56 images. To test statistical significance we repeated this pr@fess
times, each time splitting the dataset into training and testing sequences.

We applied both KQBC and SVM to this dataset. We used the Gaussian kernel:

K (21,22) = exp (— a1 — o /202) wheres = 3500 which is the value favorable

by SVM. The results are presented in figure 3. It is apparent from figure 3 that KQBC
outperforms SVM. When the budget allows fid0 — 140 labels, KQBC has an error rate

of 2 — 3 percent less than the error rate of SVM. Whel) labels are used, KQBC out-
performs SVM by3.6% on average. This difference is significant a®9d% of the trials
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Figure 2:Examples of face images used for the face recognition task
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Figure 3:The generalization error of KQBC and SVM for the faces datase(averaged

over 20 trials). The generalization error (y-axis) vs. number of queries (x-axis) for KQBC
(solid) and SVM (dashed) are compared. When SVM was applied solely to the instances
selected by KQBC (dotted line) the results are better than SVM but worse than KQBC.

KQBC outperformed SVM by more thali¥. In one of the cases, KQBC wa3% better.

We also used KQBC as an active selection method for SVM. We trained SVM over the
instances selected by KQBC. The generalization error obtained by this combined scheme
was better than the passive SVM but worse than KQBC.

In figure 4 we see the last images for which KQBC queried for labels. It is apparent, that
the selection made by KQBC is non-trivial. All the images are either highly saturated or
partly covered by scarves and sunglasses. We conclude that KQBC indeed performs well
even when kernels are used.

6 Summary and Further Study

In this paper we present a novel version of the QBC algorithm. This novel version is
both efficient and rigorous. The time-complexity of our algorithm depends solely on the
number of queries made and not on the input dimension or the VC-dimension of the class.
Furthermore, our technique only requires inner products of the labeled data points - thus it
can be implemented with kernels as well.

We showed a practical implementation of QBC using kernels and the hit and run random
walk which is very close to the “provable” version. We conducted a couple of experiments
with this novel algorithm. In all our experiments, KQBC outperformed SVM significantly.
However, this experimental study needs to be extended. In the future, we would like to
compare our algorithm with other active learning algorithms, over a variety of datasets.



Figure 4: Images selected by KQBCThe last six faces for which KQBC queried for a
label. Note that three of the images are saturated and that two of these are wearing a scarf
that covers half of their faces.
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