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Abstract

We consider a framework for semi-supervised learning using spectral
decomposition based un-supervised kernel design. This approach sub-
sumes a class of previously proposed semi-supervised learning methods
on data graphs. We examine various theoretical properties of such meth-
ods. In particular, we derive a generalization performance bound, and
obtain the optimal kernel design by minimizing the bound. Based on
the theoretical analysis, we are able to demonstrate why spectral kernel
design based methods can often improve the predictive performance. Ex-
periments are used to illustrate the main consequences of our analysis.

1 Introduction

Spectral graph methods have been used both in clustering and in semi-supervised learning.
This paper focuses on semi-supervised learning, where a classifier is constructed from both
labeled and unlabeled training examples. Although previous studies showed that this class
of methods work well for certain concrete problems (for example, see [1, 4, 5, 6]), there
is no satisfactory theory demonstrating why (and under what circumstances) such methods
should work.

The purpose of this paper is to develop a more complete theoretical understanding for graph
based semi-supervised learning. In Theorem 2.1, we present a transductive formulation of
kernel learning on graphs which is equivalent to supervised kernel learning. This new
kernel learning formulation includes some of the previous proposed graph semi-supervised
learning methods as special cases. A consequence is that we can view such graph-based
semi-supervised learning methods as kernel design methods that utilize unlabeled data; the
designed kernel is then used in the standard supervised learning setting. This insight allows
us to prove useful results concerning the behavior of graph based semi-supervised learning
from the more general view of spectral kernel design. Similar spectral kernel design ideas
also appeared in [2]. However, they didn't present a graph-based learning formulation
(Theorem 2.1 in this paper); nor did they study the theoretical properties of such methods.
We focus on two issues for graph kernel learning formulations based on Theorem 2.1. First,
we establish the convergence of graph based semi-supervised learning (when the number
of unlabeled data increases). Second, we obtain a learning bound, which can be used to
compare the performance of different kernels. This analysis gives insights to what are good
kernels, and why graph-based spectral kernel design is often helpful in various applications.
Examples are given to justify the theoretical analysis. Due to the space limitations, proofs



will not be included in this paper.

2 Transductive Kernel Learning on Graphs

We shall start with notations for supervised learning. Consider the problem of predicting
a real-valued output” based on its corresponding input vecfor In the standard ma-
chine learning formulation, we assume that the d&faY’) are drawn from an unknown
underlying distributionD. Our goal is to find a predictgi(z) so that the expected true
loss ofp given below is as small as possib(p(-)) = E(x y)~pL(p(X),Y), where we
useEx y)~p to denote the expectation with respect to the true (but unknown) underlying
distributionD. Typically, one needs to restrict the hypothesis function family size so that a
stable estimate within the function family can be obtained from a finite number of samples.
We are interested in learning in Hilbert spaces. For notational simplicity, we assume that
there is a feature representatiof:) € H, where is a high (possibly infinity) dimen-
sional feature space. We denatér) by column vectors, so that the inner product in the
Hilbert-spaceH is the vector product. A linear classifigfz) on’H can be represented by

a vectorw € ‘H such thap(z) = wy(z).

Let the training samples G&X1, Y1), . . ., (X,, Y,,). We consider the following regularized
linear prediction method oK:

~ _ AT ~ T
pa) =dT (), b =argmin |~ ZL G(X0), V) + dww| . (1)
If H is an infinite dimensional space, then it is not be feasible to solve (1) directly. A
remedy is to use kernel methods. Given a feature represent&tionwe can define kernel
k(z,2') = (z)Ty(2’). Itis well-known (the so-called representer theorem) that the
solution of (1) can be representedigs) = > ", &;k(X;, z), where[d;] is given by

[@J-arg min ZL Za] (Xi, X)), Y —|—/\Zo¢io¢jk‘(X7;,Xj) . (2

la;]ER™ =
1,j=1

The above formulations of kernel methods are standard. In the following, we present an
equivalence of supervised kernel learning to a specific semi-supervised formulation. Al-
though this representation is implicitin some earlier papers, the explicit form of this method
is not well-known. As we shall see later, this new kernel learning formulation is critical for
analyzing a class of graph-based semi-supervised learning methods.

In this framework, thelata graphconsists of nodes that are the data poikiis The edge
connecting two nodeX; andX is weighted byt (X;, X;). The following theorem, which
establishes the graph kernel learning formulation we will study in this paper, essentially
implies that graph-based semi-supervised learning is equivalent to the supervised learning
method which employs the same kernel.

Theorem 2.1 (Graph Kernel Learning) Consider labeled datg(X;,Y;)}i=1,...» and

unlabeled dataX; (j = n+1,...,m). Consider real-valued vectors= [f1,..., f]T €
R™, and the following semi-supervised learning method:

f =arg inf ZL [ Y)+ M TKEf, (3)

f cRm™

whereK (often called gram-matrix in kernel learning or affinity matrix in graph learning)
is anm x m matrix with K, ; = k(X;, X;) = ¢(X;)T¢(X;). Letp be the solution of (1),

thenf; = p(X;)forj=1,....m



The kernel gram matriX is always positive semi-definite. However/ifis not full rank
(singular), then the correct interpretation f K —' f is lim,,_,o+ FHK + plsm) L f,

where I« IS them x m identity matrix. If we start with a given kernél and let

K = [k(X;, X;)], then a semi-supervised learning method of the form (3) is equivalent
to the supervised method (1). It follows that with a formulation like (3), the only way to
utilize unlabeled data is to replaée by a kernelK in (3), ork by & in (2), whereK (or

k) depends on the unlabeled data. In other words, the only benefit of unlabeled data in this
setting is to construct a good kernel based on unlabeled data.

Some of previous graph-based semi-supervised learning methods employ the same formu-
lation (3) with K —! replaced by the graph Laplacian operakowhich we will describe

in Section 5). However, the equivalence of this formulation and supervised kernel learning
(with kernel matrixk’ = L—') was not obtained in these earlier studies. This equivalence is
important for good theoretical understanding, as we will see later in this paper. Moreover,
by treating graph-based supervised learning as unsupervised kernel design (see Figure 1),
the scope of this paper is more general than graph Laplacian based methods.

Input: labeled datf X;, Yi)]i=1.....n, unlabeled dat&; (j = n + 1,...,m)
shrinkage factors; > 0 (j = 1,...,m), kernel functiork(-, -),

Output: predictive valueg! on X; (j = 1,...,m)
Form the kernel matrix< = [k(X;, X;)] (i,j = 1,...,m)
Compute the kernel eigen-decomposition:

K =m " pjojo], where(y;, v;) are eigenpairs ok (vfv; =1)
Modify the kernel matrix ask' = m =" | s;ujv0] (%)
Computef’ = arg min e pm [% Sr L(fi,Yi) + )\fo(’lf].

Figure 1: Spectral kernel design based semi-supervisetifgaon graph

In Figure 1, we consider a general formulation of semi-supervised learning method on data
graph through spectral kernel design. This is the method we will analyze in the paper. As
a special case, we can let = g(u;) in Figure 1, whergy is a rational function, then

K = g(K/m)K. In this special case, we do not have to compute eigen-decomposition of
K. Therefore we obtain a simpler algorithm with thg in Figure 1 replaced by

K =g(K/m)K. 4)

As mentioned earlier, the idea of using spectral kernel design has appeared in [2] although
they didn’t base their method on the graph formulation (3). However, we believe our anal-
ysis also sheds lights to their methods. The semi-supervised learning method described in
Figure 1 is useful only whey is a better predictor thafiin Theorem 2.1 (which uses the
original kernelK) — in other words, only when the new kerr€lis better thark'.

In the next few sections, we will investigate the following issues concerning the theoretical

behavior of this algorithm: (a) the limiting behavior $f asm — oo; that is, whethey”
converges for eacjy (b) the generalization performance of (3); (c) optimal Kernel design
by minimizing the generalization error, and its implications; (d) statistical models under
which spectral kernel design based semi-supervised learning is effective.

3 TheLimiting Behavior of Graph-based Semi-supervised L earning

We want to show that as» — oo, the semi-supervised algorithm in Figure 1 is well-
behaved. That @‘j’ converges as1 — oo. This is one of the most fundamental issues.



Using feature space representation, we have ') = v (x)"+(z"). Therefore a change
of kernel can be regarded as a change of feature mapping. In particular, we consider a

feature transformation of the forgh(z) = S'/2¢(z), whereS is an appropriate positive
semi-definite operator oK. The following result establishes an equivalent feature space
formulation of the semi-supervised learning method in Figure 1.

Theorem 3.1 Using notations in Figure 1. Assuni€z,z’) = (z)T+(z"). Consider
S = Z;nzl sjuju;f, whereu; = Wov;/ /iy, ¥ = [(X1),...,¥(Xm)], then(u;, uy) is
an eigenpair ot U™ /m. Let

1 n
o 1T G1/2 ~ . T q1/2 N v T
=TS z =argmin |~ > L(w"S X)), Y + A .
p(x) w( ), w I'gwelH ni - (w ¢( ) ) wow

Thenf! =p'(X;) (G =1,...,m).

The asymptotic behavior of Figure 1 whem — oo can be easily understood from
Theorem 3.1. In this case, we just replagd@”/m = L3> »(X;)y(X;)" by
Exy(X)w(X)T. The spectral decomposition Bfx (X )y (X)T corresponds to the fea-
ture space PCA. It is clear that $f converges, then the feature space algorithm in Theo-
rem 3.1 also converges. In genersiiconverges if the eigenvectorg converges and the
shrinkage factors; are bounded. As a special case, we have the following result.

Theorem 3.2 Consider a sequence of daf&;, X5, ... drawn from a distribution, with
only the firstn points labeled. Assume when — oo, E;":l Y(X;)v(X;)T/m con-

verges toE x (X ) (X)T almost surely, ang; is a continuous function in the spec-
tral range of Ex¢(X)y(X)T. Now in Figure 1 with(x) given by (4) and kernel

k(z,2") = (x) ('), fJ’ converges almost surely for each fixgd

4 Generalization analysison graph

We study the generalization behavior of graph based semi-supervised learning algorithm
(3), and use it to compare different kernels. We will then use this bound to justify the ker-
nel design method given in Section 2. To measure the sample complexity, we consider
points (X;,Y;) fori = 1,...,m. We randomly pickn distinct integers,...,4, from
{1,...,m} uniformly (sample without replacement), and regard it asiii@beled train-

ing data. We obtain predictive valué; on the graph using the semi-supervised learning
method (3) with the labeled data, and test it on the remaining n data points. We are
interested in the average predictive performance over all random draws.

Theorem 4.1 Consider(X;,Y;) fori = 1,...,m. Assume that we randomly piekdis-
tinct integersiy, ..., i, from{1,...,m} uniformly (sample without replacement), and de-

note it byZ,. Let f(Z,) be the semi-supervised learning method (3) using training data in
Zn: f(Zn) = argmingepm [£3,c, L(fi, Vo) + AfTK 7 f]. If |25 L(p,y)| < v, and
L(p,y) is convex with respect tg then we have

7’tr(K)
2\nm

L ¢ : RS T pr—1
Eznm_ngz: L(fi(Zn),Y;) < inf E;L(fj,Yj)JrAf K7+
J n J=

The bound depends on the regularization parameterladdition to the kernek(. In order
to compare different kernels, it is reasonable to compare the bound with the optforal



eachK. That is, in addition to minimizing’, we also minimize ovek on the right hand of

the bound. Note that in practice, it is usually not difficult to find a nearly-optixrtatough
cross validation, implying that it is reasonable to assume that we can choose the dptimal
in the bound. With the optimal, we obtain:

Ezo—— 3 LHZ).Y) < inf |- ZL (1)) + Z= /R K)|

¢ Zn
whereR(f, K) = tr(K/m) fT K~ f is the complexity off with respect to kernek.

If we defineK as in Figure 1, then the complexity of a functipmith respect tds is given

by R(f, K) = (3075 sin) (X252, o3 /(sjuy))- If we believe that a good approximate
target functionf can be expressed gs= 3 _; ajv; with [a;| < 3; for some knowns;,
then based on this belief, the optimal choice of the shrinkage factor beegraes); /1.;.
That is, the kernel that optimizes the boundsis= 2 Bjv;jv], wherev; are normalized
eigenvectors of<. In this case, we hav&(f, K) < (22, B;)%. The eigenvalues of the
optimal kernel is thus independent &f, but depends only on the spectral coefficient’s
ranges; of the approximate target function.

Since there is no reason to believe that the eigenvalyesf the original kernelK are
proportional to the target spectral coefficient range. If we have some guess of the spectral
coefficients of the target, then one may use the knowledge to obtain a better kernel. This
justifies why spectral kernel design based algorithm can be potentially helpful (when we
have some information on the target spectral coefficients). In practice, it is usually diffi-
cult to have a precise guess®f. However, for many application problems, we observe in
practice that the eigenvalues of kerdédecays more slowly than that of the target spectral
coefficients. In this case, our analysis implies that we should use an alternative kernel with
faster eigenvalue decay: for example, usiiginstead ofK. This has a dimension reduc-

tion effect. That is, we effectively project the data into the principal components of data.
The intuition is also quite clear: if the dimension of the target function is small (spectral
coefficient decays fast), then we should project data to those dimensions by reducing the
remaining noisy dimensions (corresponding to fast kernel eigenvalue decay).

5 Spectral analysis: the effect of input noise

We provide a justification on why spectral coefficients of the target function often decay
faster than the eigenvalues of a natural ketfiel In essence, this is due to the fact that
input vectorX is often corrupted with noise. Together with results in the previous section,
we know that in order to achieve optimal performance, we need to use a kernel with faster
eigenvalue decay. We will demonstrate this phenomenon under a statistical model, and use
the feature space notation in Section 3. For simplicity, we assuméthat= x.

We consider a two-class classification problendf? (with the standard 2-norm inner-
product), where the lab& = +1. We first start with a noise free model, where the data can
be partitioned inte clusters. Each clustélis composed of a single center paint(having

zero variance) with labegjl, = +1. In this model, assume that the centers are well separated
so that there is a weight vectar, such thatw! w, < co andw!z, = g,. Without loss

of generality, we may assume thatandw, belong to agp-dimensional subspadeg,. Let

VpL be its orthogonal complement. Assume now that the observed input data are corrupted
with noise. We first generate a center indexand then noisé (which may depend on

£). The observed input data is the corrupted d&ta- z, + 0, and the observed output is

Y = wlZ,. In this model, le(X;) be the center corresponding 15, the observation
can be decomposed aXl; = Z,x,) + §(X;), andY; = wzfg(xi). Given noised, we



decompose it a8 = §; + d, whered; is the orthogonal projection @fin V,,, andd is
the orthogonal projection af in V;}. We assume thah; is a small noise component; the
componend, can be large but has small variance in every direction.

Theorem 5.1 Consider the data generation model in this section, with observatioa
Z, + 0 andY = wlz,. Assume that is conditionally zero-mean giveh Es00 = 0.

LetEXXT = Zj ujujujT be the spectral decomposition with decreasing eigenvalyes
(u]u; = 1). Then the following claims are valid: let? > 02 > --. be the eigenval-
ues ofEdyd7, thenuj > o2; if H(Sng b/||wsl2, then|wl X; — Y;| < b; ¥Vt > 0,
ZJ>1(w u;)? /LJ wl(EZoz] ) "tw,.

Considenn points X, ..., X, Let¥ = [X,,..., X,,] andK = OT0 = m 3 pjv;0]
be the kernel spectral decomposition. ket = Vv;/,/mp;, fi = wl'X;, and f =
>_;jov;. Then it is not difficult to verify thaty; = Vmgwlug. If we assume that
asymptotically >~ | X; X — EX X7, then we have the following consequences:

o f; = wl'X;is a good approximate target whiis small. In particular, ib < 1,
then this function always gives the correct class label.

e Forallt > 0, the spectral coefficient; of f decays as;; >°7" L2/t <

wl (Bz2] ) ~tw,.
e The eigenvalug; decays slowly when the noise spectral decays slow]y> 032..

If the clean data are well behaved in that we can find a weight vector such that
w*T(EX:Eg(X)@T(X))*tw* is bounded for someé > 1, then when the data are corrupted
with noise, we can find a good approximate target that has spectral decay faster (on aver-
age) than that of the kernel eigenvalues. This analysis implies that if the feature represen-
tation associated with the original kernel is corrupted with noise, then it is often helpful
to use a kernel with faster spectral decay. For example, instead of KSimg may use

K = K?. However, it may not be easy to estimate the exact decay rate of the target spectral
coefficients. In practice, one may use cross validation to optimize the kernel.

A kernel with fast spectral decay projects the data into the most prominent principal compo-
nents. Therefore we are interested in designing kernels which can achieve a dimension re-
duction effect. Although one may use direct eigenvalue computation, an alternative is to use
afunctiong(K /m)K for such an effect, as in (4). For example, we may consider a normal-
ized kernel such thak'/m = °, pjuju] where0 < u; < 1. A standard normalization

method is to uséD~ /2K D~1/2, whereD is the diagonal matrix with each entry corre-
sponding to the row sums df. It follows thatg(K/m)K =m 3}, g(uj)ujuj . We are
interested in a functiop such thay(u)p ~ 1 wheny € [«, 1] for someq, andg( Ju =0
wheny < « (wherea is close to 1). One such functionis to i) = (1—a) /(1 —ap).

This is the function used in various graph Laplacian formulations with normalized Gaus-
sian kernel as the initial kernél’. For example, see [5]. Our analysis suggests that it is
the dimension reduction effect of this function that is important, rather than the connec-
tion to graph Laplacian. As we shall see in the empirical examples, other kernels such as
K2, which achieve similar dimension reduction effect (but has nothing to do with graph
Laplacian), also improve performance.

6 Empirical Examples

This section shows empirical examples to demonstrate some consequences of our theoret-
ical analysis. We use the MNIST data set (http://yann.lecun.com/exdb/mnist/), consisting



of hand-written digit images (representing 10 classes, fdagit “0” to digit “9”). In the
following experiments, we randomly dras = 2000 samples. We regard = 100 of
them as labeled data, and the remaining- n = 1900 as unlabeled test data.

Normalized 25NN, MNIST Accuracy: 25NN, MNIST
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Figure 2: Left: spectral coefficients; right: classificatexturacy.

Throughout the experiments, we use the least squaresliossy) = (p —y)? for simplic-

ity. We study the performance of various kernel design methods, by changing the spectral
coefficients of the initial gram matriX(, as in Figure 1. Below we writg; for the new
spectral coefficient of the new gram matdk i.e., K = YI" | Gv;v]. We study the
following kernel design methods (also see [2]), with a dimension cut off paramieser

thati, = 0 wheni > d. (@)[1,...,1,0,...,0]: i; = 1if ¢ < d, and 0 otherwise. This

was used in spectral clustering [3]. (B): i; = p; if i < d; 0 otherwise. This method is
essentially kernel principal component analysis which keepd thest significant princi-

pal components of. (c) K?: ji; = p? if i < d; 0 otherwise. We sei = 2,3,4. This
accelerates the decay of eigenvaluedsof (d) Inverse:i; = 1/(1 — pu;) if ¢ < d; O
otherwise.p is a constant close to 1 (we used 0.999). This is essentially graph-Laplacian
based semi-supervised learning for normalized kernel (e.g. see [5]). Note that the standard
graph-Laplacian formulation sefs= m. (e)Y: ji; = |Y Tv;| if i < d; O otherwise. This is

the oracle kernel that optimizes our generalization bound. The purpose of testing this oracle
method is to validate our analysis by checking whether good kernel in our theory produces
good classification performance on real data. Note that in the experiments, we use averaged
Y over the ten classes. Therefore the resulting kernel will not be the best possible kernel
for each specific class, and thus its performance may not always be optimal.

Figure 2 shows the spectral coefficients of the above mentioned kernel design methods
and the corresponding classification performance. The initial kernel is normalized 25-NN,
which is defined ag( = D~'/2W D~1/2 (see previous section), whe¥g;; = 1 if either

thei-th example is one of the 25 nearest neighbors ofjttleexample or vice versa; and

0 otherwise. As expected, the results demonstrate that the target spectral coefficients
decay faster than that of the original kerd€!l Therefore it is useful to use kernel design
methods that accelerate the eigenvalue decay. The accuracy plot on the right is consistent
with our theory. The near oracle kernel 'Y’ performs well especially when the dimension
cut-off is large. With appropriate dimensidnall methods perform better than the super-
vised base-line (original K) which is belo®5%. With appropriate dimension cut-off, all
methods perform similarly (oved0%). However,K? with (p = 2, 3,4) is less sensitive to

the cut-off dimensiornl than the kernel principal component dimension reduction method
K. Moreover, the hard threshold method in spectral clustefing (.,1,0,...,0]) is not

stable. Similar behavior can also be observed with other initial kernels. Figure 3 shows
the classification accuracy with the standard Gaussian kernel as the initial k&rbeth

with and without normalization. We also used different bandwidtt illustrate that the



behavior of different methods are similar with differér(in a reasonable range). The re-

sult shows that normalization is not critical for achieving high performance, at least for
this data. Again, we observe that the near oracle method performs extremely well. The
spectral clustering kernel is sensitive to the cut-off dimension, whitewith p = 2.3, 4

are quite stable. The standard kernel principal component dimension reduction (method
K) performs very well with appropriately chosen dimension cut-off. The experiments are
consistent with our theoretical analysis.

Accuracy: normalized Gaussian, MNIST Accuracy: Gaussian, MNIST
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Figure 3: Classification accuracy with Gaussian kew{elj) = exp(—||z; — x;|[3/t).
Left: normalized Gaussiarn & 0.1); right: unnormalized Gaussiah+£ 0.3).

7 Conclusion

We investigated a class of graph-based semi-supervised learning methods. By establishing
a graph-based formulation of kernel learning, we showed that this class of semi-supervised
learning methods is equivalent to supervised kernel learning with unsupervised kernel de-
sign (explored in [2]). We then obtained a generalization bound, which implies that the
eigenvalues of the optimal kernel should decay at the same rate of the target spectral co-
efficients. Moreover, we showed that input noise can cause the target spectral coefficients
to decay faster than the kernel spectral coefficients. The analysis explains why it is often
helpful to modify the original kernel eigenvalues to achieve a dimension reduction effect.
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