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Abstract

Our understanding of the input-output function of single cells has been
substantially advanced by biophysically accurate multi-compartmental
models. The large number of parameters needing hand tuning in these
models has, however, somewhat hampered their applicability and inter-
pretability. Here we propose a simple and well-founded method for auto-
matic estimation of many of these key parameters: 1) the spatial distribu-
tion of channel densities on the cell’s membrane; 2) the spatiotemporal
pattern of synaptic input; 3) the channels’ reversal potentials; 4) the in-
tercompartmental conductances; and 5) the noise level in each compart-
ment. We assume experimental access to: a) the spatiotemporal voltage
signal in the dendrite (or some contiguous subpart thereof, e.g. via volt-
age sensitive imaging techniques), b) an approximate kinetic description
of the channels and synapses present in each compartment, and c) the
morphology of the part of the neuron under investigation. The key ob-
servation is that, given data a)-c), all of the parameters 1)-4) may be si-
multaneously inferred by a version of constrained linear regression; this
regression, in turn, is efficiently solved using standard algorithms, with-
out any “local minima” problems despite the large number of parameters
and complex dynamics. The noise level 5) may also be estimated by
standard techniques. We demonstrate the method’s accuracy on several
model datasets, and describe techniques for quantifying the uncertainty
in our estimates.

1 Introduction

The usual tradeoff in parameter estimation for single neuron models is between realism and
tractability. Typically, the more biophysical accuracy one tries to inject into the model, the
harder the computational problem of fitting the model’s parameters becomes, as the number
of (nonlinearly interacting) parameters increases (sometimes even into the thousands, in the
case of complex multicompartmental models).
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helpful and interesting discussions, and to R. Wood for channel definitions.



Previous authors have noted the difficulties of this large-scale, simultaneous parameter es-
timation problem, which are due both to the highly nonlinear nature of the “cost functions”
minimized (e.g., the percentage of correctly-predicted spike times [1]) and the abundance
of local minima on the very large-dimensional allowed parameter space [2, 3].

Here we present a method that is both computationally tractable and biophysically detailed.
Our goal is to simultaneously infer the following dendritic parameters: 1) the spatial distri-
bution of channel densities on the cell’s membrane; 2) the spatiotemporal pattern of synap-
tic input; 3) the channels’ reversal potentials; 4) the intercompartmental conductances; and
5) the noise level in each compartment. Achieving this somewhat ambitious goal comes at
a price: our method assumes that the experimenter a) knows the geometry of the cell, b) has
a good understanding of the kinetics of the channels present in each compartment, and c)
most importantly, is able to observe the spatiotemporal voltage signal on the dendritic tree,
or at least a fraction thereof (e.g. by voltage-sensitive imaging methods; in electrotonically
compact cells, single electrode recordings can be used).

The key to the proposed method is to recognise that, when we condition on data a)-c),
the dynamics governing this observed spatiotemporal voltage signal becomelinear in the
parameters we are seeking to estimate (even though the system itself may behave highly
nonlinearly), so that the parameter estimation can be recast into a simple constrained lin-
ear regression problem (see also [4, 5]). This implies, somewhat counterintuitively, that
optimizing the likelihood of the parameters in this setting is aconvexproblem, with no
non-global local extrema. Moreover, linearly constrained quadratic optimization is an ex-
tremely well-studied problem, with many efficient algorithms available. We give examples
of the resulting methods successfully applied to several types of model data below. In ad-
dition, we discuss methods for incorporating prior knowledge and analyzing uncertainty
in our estimates, again basing our techniques on the well-founded probabilistic regression
framework.

2 Methods

Biophysically accurate models of single cells are typically formulated compartmentally – a
set of first-order coupled differential equations that form a spatially discrete approximation
to the cable equations. Modeling the cell under investigation in this discretized manner, a
typical equation describing the voltage in compartmentx is

CxdVx(t) =

(

∑

i

ai,xJi,x(t) + Ix(t)

)

dt + σxdNx,t. (1)

HereσxNx,t is evolution (current) noise andIx(t) is externally injected current. Dropping
the subscriptx where possible, the termsai · Ji(t) represent currents due to:

1. voltage mismatch in neighbouring compartments,fx,y(Vy(t) − Vx(t)),
2. synaptic input,gs(t)(Es − V (t)) ,
3. membrane channels, active (voltage-dependent) or passive,ḡjgj(t)(Ej − V (t)).

Hereai are parameters to be inferred:

1. the intercompartmental conductancesfx,y,
2. the spatiotemporal input from synapses, us(t), from whichgs(t) is obtained by

dgs(t)/dt = −gs(t)/τs + us(t), (2)

a linear convolution operation (the synaptic kinetic parameterτs is assumed
known) which may be written in matrix notationgs = Ku.



3. the ion channel concentrationsḡj . The open probabilities of channelj, gj(t), are
obtained from thechannel kinetics, which are assumed to evolve deterministically,
with a known dependence onV , as in the Hodgkin-Huxley model,gNa = m3h,

τmdm(t)/dt = m∞(V ) − m, (3)

and similarly forh. Again, we emphasize that the kinetic parametersτm and
m∞(V ) are assumed known; only the inhomogeneous concentrations are un-
known. (For passive channelsgj is taken constant and independent of voltage.)

The parameters 1-3 are relative to membrane capacitanceCx.1

When modeling the dynamics of a single neuron according to (1), the voltageV (t) and
channel kineticsgj(t) are typically evolved in parallel, according to the injected current
I(t) and synaptic inputsus(t). Suppose, on the other hand, that we have observed the
voltageVx(t) in each compartment. Since we have assumed we also know the channel
kinetics (equation 3), the synaptic kinetics (equation 2) and the reversal potentialsEj of the
channels present in each compartment, we may decouple the equations and determine the
open probabilitiesgj,x(t) for t ∈ [0, T ]. This, in turn, implies that the currentsJi,x(t) and
voltage differentialsV̇x(t) are all known, and we may interpret equation 1 as aregression
equation, linear in the unknown parametersai, instead of an evolution equation. This is the
key observation of this work.

Thus we can use linear regression methods to simultaneously infer optimal values of the
parameters{ḡj,x, us,x(t), fx,y}

2. More precisely, rewrite equation (1) in matrix form,V̇ =
Ma + ση, where each column of the matrixM is composed of one of the known currents
{Ji(t), t ∈ [0, T ]} (with T the length of the experiment) and the column vectorsV̇,a, and
η are defined in the obvious way. Then

âopt = arg min
a

‖V̇ − Ma‖2
2. (4)

In addition, since on physical grounds the channel concentrations, synaptic input, and con-
ductances must be non-negative, we require our solutionai ≥ 0. The resulting linearly-
constrained quadratic optimization problem has no local minima (due to the convexity of
the objective function and of the domaingi ≥ 0), and allows quadratic programming (QP)
tools (e.g., quadprog.m in Matlab) to be employed for highly efficient optimization.

Quadratic programming tactics: As emphasized above, the dimensiond of the parameter
space to be optimized over in this application is quite large (d∼ Ncomp(TNsyn + Nchan),
with N denoting the number of compartments, synapse types, and membrane channel types
respectively). While our problem is convex, and therefore tractable in the sense of having
no nonglobal local optima, the time-complexity of QP, implemented naively, isO(d3),
which is too slow for our purposes.

Fortunately, the correlational structure of the parameters allows us to perform this opti-
mization more efficiently, by several natural decompositions: in particular, given the spa-
tiotemporal voltage signalVx(t), parameters which are distant in space (e.g., the densities
of channels in widely-separated compartments) and time (i.e., the synaptic inputus,x(t) for
t = ti andtj with |ti − tj | large) may be optimized independently. This amounts to a kind
of “coordinate descent” algorithm, in which we decompose our parameter set into a set
of (not necessarily disjoint) subsets, and iteratively optimize the parameters in each subset

1Note thatCx is the proportionality constant between the externally injected electrode current and
dV
dt

. It is linear in the data and can be included with the other parametersai in the joint estimation.
2In the case that the reversal potentialsEj are unknown as well, we may estimate these terms by

separating the term̄gjgj(t)(V (t) − Ej) into ḡjgj(t)V (t) and(ḡjEj)gj(t), thereby increasing the
number of parameters in the regression by one per channel;Ej is then set to(ḡjEj)/ḡj .



while holding all the other parameters fixed. (The quadratic nature of the original problem
guarantees that each of these subset problems will be quadratic, with no local minima.)
Empirically, we found that this decomposition / sequential optimization approach reduced
the computation time fromO(d3) to nearO(d).

2.1 The probabilistic framework

If we assume the noiseNx,t is Gaussian and white, then the mean-square regression so-
lution for a described above coincides exactly with the (constrained) maximum likelihood
estimate,̂aML = arg mina ‖V̇−Ma‖2

2/2σ2. (The noise scaleσ may also be estimated via
maximum likelihood.) This suggests several straightforward likelihood-based techniques
for representing the uncertainty in our estimates.

Posterior confidence intervals: The assumption of Gaussian noise implies that the poste-
rior distribution of the parametersa is of the formp(a|V) = 1

Z
p(a)Gµ,Σ(a), with Z a nor-

malizing constant, the priorp(a) supported onai ≥ 0, and the mean and covariance of the
likelihood GaussianG(a) given byµ = (MT M)−1MT V̇ andΣ−1 = MT M/σ2. We will
assume a flat prior distributionp(a) (that is, no prior knowledge) on the non-synaptic pa-
rameters{ḡj,x, fx,y} (although clearly non-flat priors can be easily incorporated here [6]);
for the synaptic parametersus,x(t) it will be convenient to use a product-of-exponentials
prior, p(u) =

∏

i λi exp(−λiui). In each case, computing confidence intervals forai

reduces to computing moments of multidimensional Gaussian distributions, truncated to
ai ≥ 0.

We use importance sampling methods [7] to compute these moments for the channel param-
eters. Sampling from high-dimensional truncated Gaussians via sample-reject is inefficient
(since samples from the non-truncated Gaussian – call this distributionp∗(a|V) – may vi-
olate the constraintai ≥ 0 with high probability). Therefore we sample instead from a
proposal densityq(a) with support onai ≥ 0 (specifically, a product of univariate trun-
cated Gaussians with meanai and appropriate variance) and evaluate the second moments
aroundaML by

E[(ai−aMLi)
2|V] ≈

1

Z

N
∑

n=1

p∗(an|V)

q(an)
(an

i −aMLi)
2 where Z =

N
∑

n=1

p∗(an|V)

q(an)
.

(5)
Hessian Principal Components Analysis: The procedure described above allows us to
quantify the uncertainty of individual estimated parametersai. We are also interested in the
uncertainty of our estimates in a joint sense (e.g., in the posterior covariance instead of just
the individual variances). The negative Hessian of the loglikelihood function,A ∼ MT M,
contains a great deal of this information, which may be extracted via a kind of princi-
pal components analysis: the eigenvectors ofA corresponding to the greatest eigenvalues
tell us in which directions the model is most strongly constrained by the data, while low
eigenvalues correspond to directions in which the likelihood changes relatively slowly, e.g.
channels whose corresponding currents are highly correlated (and therefore approximately
interchangeable). These ideas will be illustrated in section 3.4.

3 Results

To test the validity, efficiency and accuracy of the proposed method we apply it to model
data of varying complexity.



3.1 Inferring channel conductances in a multicompartmentalmodel

We take a simple 14-compartment model neuron, described by

Cx

dVx

dt
=

Nchan
∑

c=1

ḡcgc(Vx, t)(Ec − Vx(t)) +
∑

y

fx,y · (Vy(t)− Vx(t)) + Ix(t) + σxdNx,t;

recall fx,y are the intercompartmental conductances,gc(V, t) is channelc’s conductance
state given the voltage history up to timet, andḡc is the channel concentration. We min-
imize a vectorized expression as above (equation 4). On biophysical grounds we require
fx,y = fy,x; we enforce this (linear) constraint by only including one parameter for each
connected pair of compartments(x, y). In this case the true channel kinetics were of stan-
dard Hodgkin-Huxley form (Na+, K+ and leak), with inhomogeneous densities (figure 1).
To test the selectivity of the estimation procedure, we fittedNchan = 8 candidate chan-
nels from [8, 9, 10] (five of which were absent in the true model cell). Figure 1 shows the
performance of the inference; despite the fact that we used only 20 ms of model data, the
last 7 ms of which were used for the actual fitting (the first 13 ms were used to evolve the
random initial conditions to an approximately correct value), the fit is near perfect in the
σ = 0 case, with vanishingly small errorbars. The concentrations of the five channels that
were not present when generating the data were set to approximately zero, as desired (data
not shown). The lower panels demonstrate the robustness of the methods on highly noisy
(largeσ) data, in which case the estimated errorbars become significant, but the perfor-
mance degrades only slightly.
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Figure 1: Top panels:σ = 0. 14 compartment model neuron, Na+ channel concentration indi-
cated by grey scale; estimated Na+ channel concentrations in the noiseless case; observed voltage
traces (one per compartment); estimated concentrations. Bottom panels:σ large. Na+ channel con-
centration legend, values relative toCm (e.g. inmS/cm2 if Cm = 1µF/cm2); estimated Na+

concentrations in the noisy case; noisy voltage traces; estimated channel concentrations. K+ channel
concentrations and intercompartmental conductancesfx,y not shown (similar performance).

3.2 Inferring synaptic input in a passive model

Next we simulated a single-compartment, leaky neuron (i.e., no voltage-sensitive mem-
brane channels) with synaptic input from three synapses, two excitatory (glutamatertic;



τ = 3 ms,E = 0 mV) and one inhibitory (GABAA ; τ = 5 ms,E = −75 mV). When
we attempted to estimate the synaptic inputus(t) via the ML estimator described above
(figure 2, left), we observe anoverfittingphenomenon: the current noise due toNt is being
“explained” by competing balanced excitatory and inhibitory synaptic inputs. This overfit-
ting is unsurprising, given that we are modeling aT -dimensional observation,̇V, with 2T
regressor variables,u−(t) andu+(t), 0 < t < T (indeed, overfitting is much less apparent
in the case that only one synapse is modeled, where no balance of excitation and inhibition
is possible; data not shown).

Once again, we may make use of well-known techniques from the regression literature to
solve this problem: in this case, we need to regularize our estimated synaptic parameters.
Instead of maximizing the likelihood,uML, we maximize theposteriorlikelihood

ûMAP = arg min
u

1

2σ2
‖V̇ − MKu‖2

2 + λu · n with ut ≥ 0 ∀t, (6)

wheren is a vector of ones andλ is the Lagrange multiplier for the regularizer, or equiva-
lently parametrizes the exponential prior distribution overu(t). As mentioned above, this
maximuma posteriori(MAP) estimate corresponds to a product exponential prior on the
synaptic inputut; the multiplierλ may be chosen as the expected synaptic input per unit
time. It is well known that this type of prior has a sparsening effect, shrinking small values
of uML(t) to zero. This is visible in figure 2 (right); we see that the small, noise-matching
synaptic activity is effectively suppressed, permitting much more accurate detection of the
true input spike timing.
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Figure 2: Inferring synaptic inputs to a passive membrane. Top traces: excitatory inputs; bottom:
inhibitory inputs; middle: the resulting voltage trace. Left panels: synaptic inputs inferred by ML;
right: MAP estimates under the exponential (shrinkage) prior. Note the overfitting by the ML esti-
mate (left) and the higher accuracy under the MAP estimate (right); in particular note that the two
excitatory synapses of differing magnitudes may easily be distinguished.

3.3 Inferring synaptic input and channel distribution in an active model

The optimization is, as mentioned earlier, jointly convex in both channel densities and
synaptic input. We illustrate the simultaneous inference of channel densities and synaptic
inputs in a single compartment, writing the model as:

dV

dt
=

Nchan
∑

c=1

ḡcgc(V, t)(Vc − V (t)) +

S
∑

s=1

gs(t)(Vs − V (t)) + σdN(t), (7)

with the same channels and synapse types as above. The combination of leak conductance
and inhibitory synaptic input leads to very small eigenvalues inA and slow convergence



when applying the above decomposition; thus, to speed convergence here we coarsened
the time resolution of the synaptic input from 0.1 ms to 0.2 ms. Figure 3 demonstrates the
accuracy of the results.
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Figure 3: Joint inference of synaptic input and channel densities. The true parameters are in blue,
the inferred parameters in red. The top left panel shows the excitatory synaptic input, the middle left
panel the voltage trace (the only data) and the bottom left traces the inhibitory synaptic input. The
right panel shows the true and inferred channel densities; channels are the same as in 3.1.

3.4 Eigenvector analysis for a single-compartment model

Finally, as discussed above, the eigenvectors (“principal components”) of the loglikelihood
HessianA carry significant information about the dependence and redundancy of the pa-
rameters under study here. An example is given in figure 4; for simplicity, we restrict our
attention again to the single-compartment case. In the leftmost panels, we see that the
directionamost most highly-constrained by the data – the eigenvector corresponding to
the largest eigenvalue ofA – turns out to have the intuitive form of the balance between
Na+ and K+ channels. When we perturb this balance slightly (that is, when we shift the
model parameters slightly along this direction in parameter space,aML → aML+ǫamost),
the cell’s behavior changes dramatically. Conversely, the least-sensitive direction,aleast,
corresponds roughly to the balance between the concentrations of two Na+ channels with
similar kinetics, and moving in this direction in parameter space (aML → aML + ǫaleast)
has a negligible effect on the model’s dynamical behavior.
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Figure 4: Eigenvectors ofA corresponding to largest (amost, left) and smallest (aleast, right) eigen-
values, and voltage traces of the model neuron after equal sized perturbations by both (solid line:
perturbed model; dotted line: original model). The first four parameters are the concentrations of
four Na+ channels (the first two of which are in fact the same Hodgkin-Huxley channel, but with
slightly different kinetic parameters); the next four of K+ channels; the next of the leak channel; the
last of1/C.



4 Discussion and future work

We have developed a probabilistic regression framework for estimation of biophysical
single neuron properties and synaptic input. This framework leads directly to efficient,
globally-convergent algorithms for determining these parameters, and also to well-founded
methods for analyzing the uncertainty of the estimates. We believe this is a key first step
towards applying these techniques in detailed, quantitative studies of dendritic input and
processingin vitro and in vivo. However, some important caveats – and directions for
necessary future work – should be emphasized.

Observation noise: While we have explicitly allowed current noise in our main evolu-
tion equation (1) (and experimented with a variety of other current- and conductance-noise
terms; data not shown), we have assumed that the resulting voltageV (t) is observed noise-
lessly, with sufficiently high sampling rates. This is a reasonable assumption when voltage
is recorded directly, via patch-clamp methods. However, while voltage-sensitive imaging
techniques have seen dramatic improvements over the last few years (and will continue to
do so in the near future), currently these methods still suffer from relatively low signal-
to-noise ratios and spatiotemporal sampling rates. While the procedure proved to be ro-
bust to low-level noise of various forms (data not shown), it will be important to relax the
noiseless-observation assumption, most likely by adapting standard techniques from the
hidden Markov model signal processing literature [11].

Hidden branches:Current imaging and dye technologies allow for the monitoring of only
a fraction of a dendritic tree; therefore our focus will be on estimating the properties of these
sub-structures. Furthermore, these dyes diffuse very slowly and may miss small branches
of dendrites, thereby effectively creating unobserved current sources.

Misspecified channel kinetics and channels with chemical dependence:Channels de-
pendent on unobserved variables (e.g., Ca++-dependent K+ channels), have not been in-
cluded in the model. The techniques described here may thus be applied unmodified to ex-
perimental data for which such channels have been blocked pharmacologically. However,
we should note that our methods extend directly to the case where simultaneous access to
voltage and calcium signals is possible; more generally, one could develop a semi-realistic
model of calcium concentration, and optimize over the parameters of this model as well.
We have discussed in some detail (e.g. figure 1) the effect of misspecifications of voltage-
dependent channel kinetics and how the most relevant channels may be selected by supply-
ing sufficiently rich “channel libraries”. Such libraries can also contain several “copies” of
the same channel, with one or more systematically varying parameters, thus allowing for
a limited search in the nonlinear space of channel kinetics. Finally, in our discussion of
“equivalence classes” of channels (figure 4), we illustrate how eigenvector analysis of our
objective function allows for insights into the joint behaviour of channels.
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